
AMSC/CMSC 661 Scientific Computing II
Spring 2005

Solution of Sparse Linear Systems
Part 2: Iterative methods

Dianne P. O’Leary
c©2005

Solving Sparse Linear Systems: Iterative methods

The plan:

• Iterative methods:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, SOR.

– Krylov subspace methods

– Preconditioning (where direct meets iterative)

• A special purpose method: Multigrid

Basic iterations

The idea: Given an initial guess x(0) for the solution to Ax∗ = b, construct a
sequence of guesses {x(0), x(1), x(2), . . .} converging to x∗.

The amount of work to construct each new guess from the previous one should
be a small multiple of the number of nonzeros in A.

Stationary Iterative Methods

These methods grew up in the engineering and mathematical literature. They
were very popular in the 1960s and are still sometimes used.

Today, they are almost never the best algorithms to use (because they take
too many iterations), but they are useful preconditioners for Krylov subspace
methods.

We will define three of them:

• Jacobi (Simultaneous displacement)

• Gauss-Seidel (Successive displacement)

• SOR

1



Theme: All of these methods split A as M − N for some nonsingular matrix
M . Other splittings of this form are also useful.

The Jacobi iteration

Idea: The ith component of the residual vector r is defined by

ri = bi−ai1x1 − ai2x2 − . . . − ai,i−1xi−1−aiixi−ai,i+1xi+1 − . . . − ainxn.

Let’s modify xi to make ri = 0.

Given x(k), construct x(k+1) by

x(k+1)
i = (bi−

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.

Observations:

• We must require A to have nonzeros on its main diagonal.

• The algorithm is easy to program! We only need to store two x vectors,
x(k) and x(k+1).

• The iteration may or may not converge, depending on the properties of A.

• We should only touch the nonzeros in A – otherwise the work per iteration
would be O(n2) instead of O(nz).

• If we partition A as L + D + U , where D contains the diagonal entries, U
contains the entries above the diagonal, and L contains the entries below
the diagonal, then we can express the iteration as

Dx(k+1) = b − (L + U)x(k)

and this is useful for analyzing convergence. (M = D, N = −(L + U))

The Gauss-Seidel iteration

Idea: If we really believe that we have improved the ith component of the
solution by our Jacobi iteration, then it makes sense to use its latest value in
the iteration:

2



Given x(k), construct x(k+1) by

x(k+1)
i = (bi−

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.

Observations:

• We still require A to have nonzeros on its main diagonal.

• The algorithm is easier to program, since we only need to keep one x
vector around!

• The iteration may or may not converge, depending on the properties of A.

• We should only touch the nonzeros in A – otherwise the work per iteration
would be O(n2) instead of O(nz).

• If we partition A as L + D + U , where D contains the diagonal entries, U
contains the entries above the diagonal, and L contains the entries below
the diagonal, then we can express the iteration as

(D + L)x(k+1) = b − Ux(k)

and this is useful for analyzing convergence. (M = D + L, N = −U)

The SOR (Successive Over-Relaxation) iteration

Idea: People who used these iterations on finite difference matrices discovered
that Gauss-Seidel (GS) converged faster than Jacobi (J), and they could improve
its convergence rate by going a little further in the GS direction:

Given x(k), construct x(k+1) by

x(k+1) = (1 − ω)x(k) + ωx
(k+1)
GS

where ω is a number between 1 and 2.

Unquiz: Suppose n = 2 and our linear system can be graphed as in the figure.
Draw the first 3 Jacobi iterates and the first 3 Gauss-Seidel iterates using the
point marked with a star as x(0). Does either iteration depend on the ordering of
the equations or unknowns? []

Convergence of Stationary iterative methods

3



−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

x
1

x 2

4



• All of these iterations can be expressed as

x(k+1) = Gx(k) + c

where G = M−1N is a matrix that depends on A and c is a vector that
depends on A and b.

• For all of these iterations, x∗ = Gx∗ + c.

• Subtracting, we see that the error e(k) = x(k) − x∗ satisfies

e(k+1) = Ge(k),

and it can be shown that the error converges to zero for any initial x(0) if
and only if all of the eigenvalues of G lie inside the unit circle.

• Many conditions on A have been found that guarantee convergence of
these methods; see the SIM notes.

This is enough about slow methods.

From SIM to Krylov subspace methods

So far: Stationary iterative methods.

• Ax = b is replaced by x = Gx + c.

• x(k+1) = Gx(k) + c

• If x(0) = 0, then

x(1) = c

x(2) ∈ span{c, Gc}
x(3) ∈ span{c, Gc, G2c}
x(k) ∈ span{c, Gc, G2c, . . . , Gk−1c}

≡ Kk(G, c)

and we call Kk(G, c) a Krylov subspace.

• The work per iteration is O(nz) plus a small multiple of n.

• Note that Kk(G, c) = Kk(Ĝ, c) if Ĝ = I − G.

The idea behind Krylov subspace methods: Instead of making the GS
choice (for example) from the Krylov subspace, let’s try to pick the best vector
without doing a lot of extra work.

What is “best”?

5



• The variational approach: Choose x(k) ∈ Kk(G, c) to minimize

‖x − x∗‖Z

where ‖y‖2
Z = yT Zy and Z is a symmetric positive definite matrix.

• The Galerkin approach: Choose x(k) ∈ Kk(G, c) to make the residual
r(k) = b − Ax(k) orthogonal to every vector in Kk(G, c) for some choice of
inner product.

Practicalities

• Note that we expand the subspace K at each iteration. This gives us a
very important property: After at most n iterations, Krylov
subspace iterations terminate with the true solution.

• This finite termination property is less useful than it might
seem, since we think of applying these methods when n is so
large (thousands, millions, billions, etc.) that we can’t afford
more than a few hundred iterations.

• The only way to make the iteration practical is to make a very clever
choice of basis for K. If we use the obvious choice of c, Gc, G2c, . . .,
then after just a few iterations, our algorithm will lose accuracy.

• We need to choose between (variational) minimization and (Galerkin)
projection.

Krylov Ingredient 1: A practical basis

An orthonormal basis for K makes the iteration practical. We say that a
vector v is B-orthogonal to a vector u if

uT Bv = 0.

where B is a symmetric positive definite matrix. Similarly, we define
‖u‖2

B = uT Bu.

Let’s construct our basis for Kk(Ĝ, c).

Our first basis vector is

p(0) = c/‖c‖B

6



Now suppose that we have j + 1 basis vectors p(0), . . . , p(j) for Kj+1(Ĝ, c), and

that we have some vector r ∈ Kj+2(Ĝ, c) but r /∈ Kj+1(Ĝ, c). Often, we take r

to be Ĝp(j).

We define the next basis vector by the process of Gram-Schmidt
orthogonalization:

p(j+1) = (r − h0,jp
(0) − . . . − hj,jp

(j))/hj+1,j

where hi,j = p(i)T Br (i = 0, . . . , j) and hj+1,j is chosen so that
p(j+1)T Bp(j+1) = 1.

In matrix form, we can express this relation as

Ĝp(j) =
[

p(0) p(1) . . . p(j+1)
]



h0,j

h1,j

...
hj+1,j


 ,

so after k steps we have
ĜPk = Pk+1Hk (∗)

where Hk is a (k + 1) × k matrix with entries hij (zero if i > j + 1) and Pk is
n × k and contains the first k basis vectors as its columns.

Equation (*) is very important: Since the algorithm terminates after n
vectors have been formed, we have actually factored our matrix

Ĝ = PnHnP−1
n

(and note that P−1
n = PT

n if B = I)

Therefore, the matrix Hn is closely related to Ĝ – it has the same eigenvalues.
In fact, the leading k × k piece of Hn (available after k steps) is in some sense a
good approximation to Ĝ. This is the basis of algorithms for

• solving linear systems of equations involving Ĝ.

• finding approximations to eigenvalues and eigenvectors of Ĝ.

We have just constructed the Arnoldi algorithm.

The Arnoldi algorithm

7



[P, H] = Arnoldi(k, Ĝ, B, p(0))
Given a positive integer k, a symmetric positive definite matrix B, a
matrix Ĝ, and a vector p(0) with ‖p(0)‖B = 1.
for j = 0, 1, . . . , k − 1,

p(j+1) = Ĝp(j).

for i = 0, . . . , j,

hij = p(i)T Bp(j+1)

p(j+1) = p(j+1) − hijp
(i)

end (for i)

hj+1,j = (p(j+1)T Bp(j+1))1/2

p(j+1) = p(j+1)/hj+1,j .

end (for j)

Notes:

• In practice, B is either the identity matrix or a matrix closely related to Ĝ.

• Note that we need only 1 matrix-vector product by Ĝ per iteration.

• After k iterations, we have done O(k2) inner products of length n each,
and this work becomes significant as k increases.

• If BĜ is symmetric, then by (*), so is Hk, so all but 2 of the
inner products at step j are zero. In this case, we can let the
loop index i = j − 1 : j and the number of inner products drops
to O(k). Then the Arnoldi algorithm is called Lanczos
tridiagonalization.

• In writing this algorithm, we took advantage of the fact that p(i)T Bp(j+1)

is mathematically the same, whether we use the original vector p(j+1)

or the updated one. Numerically, using the updated one works a bit
better, but both eventually lose orthogonality, and the algorithm sometimes
needs to be restarted to overcome this.

Krylov Ingredient 2: A definition of “best”

Two good choices:

• (variational) minimization

• (Galerkin) projection.

Using Krylov minimization

8



Problem: Find x(k) ∈ Kk so that x(k) minimizes

‖x − x∗‖Z

over all choices of x ∈ Kk.

Solution: Let x(k) = Pky(k), where y(k) is a vector with k components. Then

‖x(k) − x∗‖2
Z = (Pky(k) − x∗)T Z(Pky(k) − x∗).

Differentiating with respect to the components of y(k), and setting the derivative
to zero yields

PT
k ZPky(k) = PT

k Zx∗.

Since y(k) and x∗ are both unknown, we usually can’t solve this. But we can if
we are clever about our choice of Z.

1st special choice of Z

Recall:

• We need to solve PT
k ZPky(k) = PT

k Zx∗, and Ĝx∗ = c.

• ĜPk = Pk+1Hk (∗)
• PT

k+1BPk+1 = Ik+1

Let Z = ĜT BĜ. (This is symmetric, and positive definite if Ĝ is nonsingular.)
Then

PT
k Zx∗ = PT

k ĜT BĜx∗ = PT
k ĜT Bc = HT

k PT
k+1Bc

is computable! The left-hand side also simplifies:

P T
k ZPk = PT

k ĜT BĜPk = HT
k PT

k+1BPk+1Hk = HT
k Hk.

So we need to solve
HT

k Hky(k) = HT
k PT

k+1Bc.

This algorithm is called GMRES (generalized minimum residual), due to Saad
and Schultz in 1986, and is probably the most often used Krylov method.

2nd special choice of Z

Recall:

• We need to solve PT
k ZPky(k) = PT

k Zx∗ and Ĝx∗ = c.

• ĜPk = Pk+1Hk (∗)
• PT

k+1BPk+1 = Ik+1

9



Added assumption: Assume Z = BĜ is symmetric and positive definite.
(Note that we need that Z be symmetric and positive definite in
order to be minimizing a norm of the error. Our assumption here
is that BĜ is symmetric and positive definite.)

PT
k Zx∗ = PT

k BĜx∗ = PT
k Bc

is computable. The left-hand side also simplifies:

PT
k ZPk = PT

k BĜPk = PT
k BPk+1Hk = H̄k

where H̄k contains the first k rows of Hk. So we need to solve

H̄ky(k) = PT
k Bc.

This algorithm is called conjugate gradients (CG), due to Hestenes and
Stiefel in 1952. It is the most often used Krylov method for symmetric problems.

Using Krylov projection

• Ĝx∗ = c.

• ĜPk = Pk+1Hk (∗)
• PT

k+1BPk+1 = Ik+1

Problem: Find x(k) ∈ Kk so that r(k) = c − Ĝx(k) is B-orthogonal to the
columns of Pk.

Solution:
0 = PT

k B(c − Ĝx(k)) = PT
k B(c − ĜPky(k))

so we need to solve
PT

k BĜPky(k) = PT
k Bc.

or
H̄ky(k) = PT

k Bc.

This algorithm is called the Arnoldi iteration. (Note: Same equation as cg,
but no assumption of symmetry or positive definiteness.)

An important alternative

The algorithms we have discussed (GMRES, CG, and Arnoldi) all use the
Arnoldi basis.

There is another convenient basis, derived using the nonsymmetric Lanczos
algorithm. This basis gives rise to several useful algorithms:

10



• CG (alternate derivation)

• bi-conjugate gradients (Bi-CG) (Fletcher 1976)

• Bi-CGStab (van der Vorst 1992)

• quasi-minimum residual (QMR) (Freund and Nachtigal 1991)

• transpose-free QMR (Freund and Nachtigal 1993)

• (the most useful) CGStab (CG-squared stabilized) (van der Vorst 1989)

Advantages: Only a fixed number of vectors are saved, not k.
Disadvantages: The basic algorithms can break down – terminate without
obtaining the solution to the linear system. Fixing this up is messy.

We won’t take the time to discuss these methods in detail, but they can be
useful.

The conjugate gradient method

• In general, we need to save all of the old vectors in order to
accomplish the projection of the residual.

• For some special classes of matrices, we only need a few old vectors.

• The most important of these classes is symmetric positive definite
matrices, just as we need for self-adjoint elliptic PDEs. The resulting
algorithm is called conjugate gradients (CG).

• It is both a minimization algorithm (in the energy norm) and a
projection algorithm (B = I).

• There is a very compact and practical form for the algorithm.

The conjugate gradient algorithm

11



[x, r] = cg(A, M, b, tol)
Given symmetric positive definite matrices A and M , a vector b, and a tolerance tol,
compute an approximate solution to Ax = b.
Let r = b, x = 0, solve Mz = r for z, and let γ = rT z, p = z.
for k = 0, 1, . . . ,, until ‖r‖ < tol,

α = γ/(pT Ap)

x = x + αp

r = r − αAp

Solve Mz = r for z.

γ̂ = rT z

β = γ̂/γ, γ = γ̂

p = z + βp

end (for k)

The matrix M is called the preconditioner, and our next task is to understand
what it does and why we might need it.

12


