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These notes are based on the 2003 textbook

of Stig Larsson and Vidar Thomée.

Ordinary Differential Equations, Initial Value Problems

Ordinary Differential Equations, Initial Value Problems = ODE/IVP

The plan:

• A review of the linear problem and initial conditions

• A few numerical methods

A recurring theme: Stability.

Note: We will assume that any matrix A that we use has a complete set of
eigenvalues and eigenvectors. Almost all matrices do. In that case, A can be
factored as in an eigendecomposition as

A = WΛW−1

where Λ is a diagonal matrix with entries λj , the eigenvalues of A.

The philosophy:

• Some of this material is covered in 660.

• We’ll just do what we need to cover IVPs for PDEs.

Reference: Chapter 7.

A review of the linear problem and initial conditions

A single first order ODE
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Problem: Find the function u(t) : R → R that satisfies

u′ + au = f(t)

for t > 0, with u(0) = v, a given number and a a given number.

Jargon: The equation is called first order because the highest derivative is
the first.

Solution:

u(t) = e−atv +
∫ t

0

e−a(t−s)f(s)ds.

Unquiz 1: Verify that this solution satisfies the differential equation and the
initial value condition.

A system of first order ODEs

Problem: Find the function u(t) : R1 → Rn that satisfies

u′ + Au = f(t)

for t > 0, with u(0) = v, a given vector and A a given n × n matrix.

Solution:

u(t) = e−tAv +
∫ t

0

e−(t−s)Af(s)ds,

where

eB =
∞∑

j=0

1
j!

Bj .

Unquiz 2: Verify that this solution satisfies the differential equation and the
initial value condition.

A more useful expression for the matrix exponential function

If A = WΛW−1 where Λ is a diagonal matrix with entries λj , then

eA =
∞∑

j=0

1
j!

Aj

=
∞∑

j=0

1
j!

(WΛW−1)j

=
∞∑

j=0

1
j!

WΛjW−1

= W


 ∞∑

j=0

1
j!

Λj


 W−1
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Aside: Taylor series tells us that

eλ = e0 + λe0 +
1
2
λ2e0 +

1
3!

λ3e0 + . . .

= 1 + λ +
1
2
λ2 +

1
3!

λ3 + . . .

=
∞∑

j=0

1
j!

λj .

So we conclude that
eA = W exp(Λ)W−1

where exp(Λ) is a diagonal matrix with entries eλj .

Observation:

• Since the solution to the ODE is

u(t) = e−tAv +
∫ t

0

e−(t−s)Af(s)ds,

we see that as t → ∞, u(t) → 0 if all eigenvalues of A are positive. This is
called asymptotic stability. In this case, small changes in the data
make small changes in the solution.

• If A has any negative eigenvalues, then the solution u can grow as t → ∞.
This is called instability.

A single second order ODE

Problem: Find the function u(t) : R → R that satisfies

u′′ + au = f(t)

for t > 0, with u(0) = v, u′(0) = w, (given numbers) and a a given
number.

Solution:
u(t) = cos(t

√
a)v +

1√
a

sin(t
√

a)w

if f = 0.

Unquiz 3: Verify that this solution satisfies the differential equation and
the initial value conditions.

A system of second order ODEs
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Problem: Find the function u(t) : R1 → Rn that satisfies

u′′ + Au = f(t)

for t > 0, with u(0) = v, u′(0) = w, (given vectors) and A a given n × n
matrix.

Solution:
u(t) = cos(t

√
A)v + (

√
A)−1 sin(t

√
A)w

if f = 0, where

cosB =
1
2
(eiB + e−iB)

sin B =
1
2i

(eiB − e−iB)
√

A = W
√

ΛW−1

and
√

Λ has diagonal entries
√

λj .

Unquiz 4: Verify that this solution satisfies the differential equation and
the initial value conditions.

Three numerical methods for first order equations

– Euler

– backward Euler

– Crank-Nicolson

Numerical methods for a single ODE

The single ODE:
u′ = f(t, u)

Let k be the mesh spacing for t (just as h was for the variable x).

– Euler (an explicit method)

u(t + k) − u(t)
k

= f(t, u(t)).

– backward Euler (an implicit method)

u(t + k) − u(t)
k

= f(t + k, u(t + k)).

– Crank-Nicolson (an implicit method)

u(t + k) − u(t)
k

= f(t + k/2, (u(t + k) + u(t))/2).
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(The generalization to a system of equations is clear(???).)

Accuracy of these three methods

– Euler
u(t + k) − u(t)

k
= f(t, u(t)).

Taylor series expansion says we make an error of order k.

– backward Euler

u(t + k) − u(t)
k

= f(t + k, u(t + k)).

Taylor series expansion says we make an error of order k.

– Crank-Nicolson

u(t + k) − u(t)
k

= f(t + k/2, (u(t + k) + u(t))/2).

Taylor series expansion says we make an error of order k2.

Stability analysis of these three methods

Suppose we apply them to the single ODE

u′ + au = 0,

and let un be the approximate solution we obtain for t = nk. Then
Euler’s method gives

u(t + k) = u(t) − kau(t)

so

u0 = v

u1 = (1 − ka)v
un = (1 − ka)nv

Unquiz 5: Show that the Backward Euler method gives

un =
1

(1 + ka)n
v.[]

In a similar way, you could show that Crank-Nicholson gives

un =
(

1 − ka/2
1 + ka/2

)n

v.
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So what?

Euler: un = (1 − ka)nv

Backward Euler: un = 1
(1+ka)n v

Crank-Nicholson: un =
(

1−ka/2
1+ka/2

)n

v

True solution: u(nk) = e−nkav

Suppose a > 0, so that the ODE is asymptotically stable. When are our
approximations asymptotically stable?

Euler: un = (1 − ka)nv
Stable if |1 − ka| < 1, or k < 2/a.

Backward Euler: un = 1
(1+ka)n v

Stable unconditionally.

Crank-Nicholson: un =
(

1−ka/2
1+ka/2

)n

v

Stable unconditionally.

A numerical method for a second order equation

u′′ = f(t, u)

becomes
u(t + k) − 2u(t) + u(t − k)

k2
= f(t, u(t)).

The error is O(k2), and the method is stable on the linear problem
u′′ + au = 0 for any k and a.

6


