
AMSC/CMSC 661 Scientific Computing II
Spring 2005

Transforms and Wavelets
Dianne P. O’Leary

c©2005

Transform methods

Recall: We have already encountered the Fourier transform

Fv(ξ) = v̂(ξ) =
∫
Rd

v(x)e−ix·ξdx,

and its inverse.

We used it to analyze certain time-dependent PDEs.

In Homework 4, Part 1, we also encountered the Discrete Sine transform

F (s) = αs

n∑
x=1

f(x) sin(sxπ/(n+ 1))

and its inverse and used it to solve a matrix problem derived from discretizing an
elliptic PDE.

We now return to these transform methods, and introduce some new ones.

The Plan

• Some useful transforms

– Fourier transforms

– Discrete Fourier transforms

– Wavelet transforms

• Properties

• Wavelets

• Applications of transforms

Some useful transforms

• The Fourier transform

• The discrete Fourier transform

1

• The discrete sine transform

• The Haar transform

• The discrete Haar transform

There are many, many other useful transforms that we don’t have time to
consider (Laplace transforms, Z-transforms, ...), but the tools we develop should
make it easier to add new transforms to your toolbox.

Reference: A First Course in Fourier Analysis, by David W. Kammler.

The setup

Given:

• A domain Ω

• An inner product (u, v) on Ω (using a variable x)

• A set of basis functions z(s, x) (usually orthogonal)

• A function f(x) of interest

Define the transform of f to be

F (s) = (f(x), z(s, x))

and define the inverse transform to be the function that maps F (s) back to
f(x).

Example 1a: The Fourier Transform (as before, but d = 1)

• Domain: Ω = (−∞,∞)

• Inner product:

(u, v) =
∫ ∞

−∞
u(x)v(x)dx

• Basis functions:
z(s, x) = e−isx

• Definition of the transform:

F (s) =
∫
R
f(x)e−ixsdx,

2

• Definition of the inverse transform:

f(x) =
1

(2π)

∫
R
F (s)e+ixsds.

The Larsson and Thomée book uses this definition.

Example 1b: The Fourier Transform (an alternate definition)

(This version has the 2π in the exponent, moves the minus sign, and avoids the
normalization constant.)

• Domain: Ω = (−∞,∞)

• Inner product:

(u, v) =
∫ ∞

−∞
u(x)v(x)dx

• Basis functions:
z(s, x) = e2πisx

• Definition of the transform:

F (s) =
∫ ∞

−∞
f(x)e2πisxdx

• Definition of the inverse transform:

f(x) =
∫ ∞

−∞
F (s)e−2πisxds

The Kammler book uses this definition.

Example 2: The Discrete Fourier Transform

• Domain: Ω = {0, 1, . . . , n− 1}
• Inner product:

(u, v) =
n−1∑
x=0

u(x)v(x)

• Basis functions:
z(s, x) = e2πisx/n

• Definition of the transform:

F (s) =
n−1∑
x=0

f(x)e2πisx/n

3

• Definition of the inverse transform:

f(x) =
n−1∑
s=0

F (s)e−2πisx/n

Example 3: The Discrete Sine Transform

• Domain: Ω = {1, . . . , n}
• Inner product:

(u, v) =
n∑

x=1

u(x)v(x)

• Basis functions:
z(s, x) = sin(sxπ/(n+ 1))

• Definition of the transform:

F (s) = αs

n∑
x=1

f(x) sin(sxπ/(n+ 1))

where αs is a normalization factor.

• Definition of the inverse transform:

f(x) = αx

n∑
s=1

F (s) sin(sxπ/(n+ 1))

Example 4: The Haar Transform

• Domain: Ω = [0, 1]

• Inner product:

(u, v) =
∫ 1

0

u(x)v(x)dx

• Basis functions:
z(s, x) = h(sx)

where

h(x) =
{

1 if 2k ≤ x < 2k + 1
−1 if 2k + 1 ≤ x < 2(k + 1)

where k is an integer.

• Definition of the transform:

F (s) = αs

∫ 1

0

f(x)z(s, x)dx

where αs is a normalization factor.

4

• Definition of the inverse transform:

f(x) = αx

∫ 1

0

F (s)z(x, s)ds

Example 5: The Discrete Haar Transform

Most of this slide has changed.

• Domain: Ω = {0, 1/n, . . . , (n− 1)/n} where n = 2k

• Inner product:

(u, v) =
n−1∑
j=0

u(j/n)v(j/n)

• Basis functions:
z(s, x) = h(sx)

• Definition of the transform:

F (s) = αs

n−1∑
j=0

f(j/n)z(s, j/n)

where αs is a normalization factor.

• Definition of the inverse transform:

f(x) = αx

n−1∑
k=0

F (k/n)z(x, k/n)

Properties of the transforms

Review: Important properties of the Fourier Transform

In the Kammler notation:

• Fourier inversion formula: F−1(Fv) = v.

• Parseval’s formula:∫ ∞

−∞
f(x)ḡ(x)dx =

∫ ∞

−∞
F (s)Ḡ(s)ds

• A norm relation: ‖v‖ = ‖V ‖.

5

• A translation relation: if w(x) = v(x − y) where y is fixed, then
W (s) = e−2πiysV (s)

• A scaling relation: if w(x) = v(ax) where a > 0 is a fixed scalar, then
W (s) = a−1V (a−1s).

• A convolution relation: Define

(v ∗ w)(x) =
∫
R
v(y)w(x − y)dy.

Then F(v ∗ w)(s) = V (s)W (s).

• A differentiation formula that holds as long as v and its derivatives go
to zero for large |x|:

Fv′(s) = 2πisV (s)

Another property of the Fourier transform

F (s) =
∫ ∞

−∞
f(x)e2πisxdx

Sometimes the function F (s) is zero almost everywhere.

For example, if f is periodic, so that f(x+ p) = f(x), then (it can be shown
that) F (s) is nonzero only for s = k/p for k = 0,±1,±2,

In this case, the integral becomes a sum, and we have a representation

f(x) =
∞∑

k=−∞
F [k]e2πkx/p.

The sine transform

In certain cases (for example, when we are considering real functions that are
periodic on [0, 2π] and 0 at the boundary), we can substitute the sine transform
for the Fourier transform without loss of information.

For this restricted class of functions, all of the above properties hold.

Fast computation of the discrete transforms

6

The discrete transforms that we have listed (Fourier, sine, and Haar) can all be
computed very quickly, in much less than the O(n2) time that seems to be
necessary. This gives rise to algorithms like the Fast Fourier Transform
(FFT) (re)discovered by Cooley and Tukey (1965) but actually due to Gauss
(1805).

There are many ways to understand this, but one of them is through matrix
factorizations.

FFT, a matrix understanding

See www.cs.umd.edu/users/oleary/c460/460matrixhand.pdf

The discrete Haar transform, a matrix understanding

Let

H1 =
[

1 1
1 −1

]
.

The Haar transform of x ∈ R2 is H1x.

Define

Hk =
[

Hk−1 Hk−1

Hk−1 −Hk−1

]
.

The Haar transform of x ∈ R2k

is Hkx.

Important observation: To compute Hkx, we need

• Hk−1x1 and Hk−1x2 (where x1 contains the top half of x and x2

contains the rest)

• 2k additions/subtractions.

This reduces the work from O(n2) to O(n log2 n) where n = 2k.

Wavelets

The Haar transforms that we considered are examples of wavelet
transforms.

In wavelet analysis, we decompose a function into its frequency components, just
as in Fourier analysis, but then we break the function up into spatial components
scaled to the frequency.

Wavelet analysis grew up in several branches of engineering, and Ingrid
Daubechies deserves much of the credit for writing a comprehensive theory of the
subject.

7

But because of the checkered history, there is a lot of jargon and several
competing but equivalent formulations.

Reference: Kammler, Chapter 10.
http://www.amara.com/current/wavelet.html
Local Expert: Prof. John Benedetto, Math Dept.

The mother wavelet

Wavelet people tend to think of the transform as starting with a mother
function or analyzing wavelet; for example,

ψ(x) =




1 if 0 ≤ x < 1/2
−1 if 1/2 ≤ x < 1

0 otherwise

(Note that this is an ingredient we used in the Haar transform.)

The important properties are:

• ∫ ∞

−∞
ψ(x)dx = 0

• ψ(x) has width 1.

The father wavelet

Then define a father wavelet or scaling function; for example

φ(x) =
{

1 if 0 ≤ x < 1
0 otherwise

Dilations and translations

Then define dilations of the mother function: ψ(x/2), ψ(x/4), . . ., and
translations ψ(2mx− k).

Notice:

• φ(x/2j) has width 2j .

• Wide dilations can be defined in terms of narrow ones: for example,

φ(x/2) = φ(x) + φ(x − 1)
ψ(x/2) = φ(x) − φ(x − 1)

8

• The collection of translations of the dilations forms a basis for a class of
functions defined on R.

Wavelet expansions

Finally, we express a function f(x) in terms of the wavelet basis:

f(x) =
∞∑

m=−∞

∞∑
k=−∞

F [m, k]ψ(2mx− k).

for some coefficients

F [m, k] = 2m

∫ ∞

−∞
f(x)ψ(2mx− k)dx.

Note: In Fourier analysis, the mth coefficient gives information about the
function at frequency scale 1/m. In wavelet analysis, F [m, k] gives information
about the function near k2−m at scale 2−m.

• If we are only interested in a finite interval, then we truncate the sum in
k.

• If we are only interested in approximating to a finite spatial scale, then
we truncate the sum in m.

Applications of the transforms

We’ll consider 6 examples:

• Function approximation

• Analytic solution of PDEs

• Eigendecomposition of certain matrices

• Spectral analysis

• Denoising and filtering

• Data compression

Application 1: Function approximation

9

We’ll illustrate this by wavelet frames.

A frame is an approximation to a given function obtained from a single value of
m; instead of

f(x) =
∞∑

m=−∞

∞∑
k=−∞

F [m, k]ψ(2mx− k),

we use

fm(x) =
∞∑

k=−∞
αm[k]φ(2mx− k).

The coefficients are defined by taking an average value of f :

αm[k] = 2m

∫ ∞

−∞
f(x)φ(2mx− k)dx = 2m

∫ (k+1)2−m

k2−m

f(x)dx.

Notice that for nice functions, |f(x) − αm[k]| stays small on the interval
[k2−m, (k + 1)2−m] for m big enough.

The usefulness of frames is partly due to a nice recursion:

fm(x) = fm−1(x) + dm−1(x)

where the detail function is defined by

dm(x) =
∞∑

k=−∞
βm[k]ψ(2mx− k)

with

βm[k] = 2m

∫ ∞

−∞
f(x)ψ(2mx− k)dx

=
1
2

(αm+1[2k] − αm+1[2k + 1]) .

Example: Figure 10-6, p.603 in Kammler.

Application 2: Analytic solution of PDEs

We have already seen this:

• The Fourier transform can be used to solve the IVP for parabolic
problems: we used a Fourier transform in the d x-variables in the
equation ut − ∆ux in x to obtain an ODE in t only.

• We could use a similar method on the wave equation.

10

Application 3: Eigendecomposition of certain matrices

The discrete sine transform provides the eigenvectors of any symmetric
tridiagonal Toeplitz matrix, and from this, we can obtain the eigenvalues and
eigenvectors of many related matrices.

Example: Notes on Fast Poisson Solvers.

Application 4: Spectral analysis

Suppose we have taken n observations of some physical phenomenon, for
instance, sunspot activity.

The discrete Fourier Transform (DFT) is a way to break the vector x of n
observations into its frequency components, to determine, for instance,
whether there is a cycle of 4 years in the observations.

Application 5: Denoising and filtering

In signal and image processing, our data is often contaminated by noise.

For example, we may have white noise (data drawn from a normal distribution
with mean zero) contaminating our true data.

In a picture, this looks like “snow”. In an audio signal, it gives snaps and pops.

Fortunately, it is easy to rid our data of this noise. We take the Fourier transform
of the data, set the high order coefficient to zero, and take the inverse Fourier
transform. This operation is called filtering the data.

Unfortunately, this also removes any part of the true signal that is of high
frequency, but this is usually tolerable.

Example: Matlab’s firdemo, nrfiltdemo.

In a similar way, we can design a filter to remove any specified frequency
components.

• If we remove low frequency components, this is called high pass
filtering.

• If we remove high frequency components, this is called low pass
filtering.

11

1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850
DATE

0

100

200

300

S
U

N
S

P
O

T
 N

U
M

B
E

R

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950
DATE

0

100

200

300

S
U

N
S

P
O

T
 N

U
M

B
E

R

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
DATE

0

100

200

300

S
U

N
S

P
O

T
 N

U
M

B
E

R

NASA/MSFC/HATHAWAY ZURICH.PS 07/2001

Fi 1 S t ti it 1750 2001 D t f

12

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Figure 2: Coefficients from discrete sin transform of sunspot data.

Filter design is an important topic in signal and image processing. Two
complicating factors:

• aliasing

• Gibbs phenomenon

Application 6: Data compression

In our previous example, we changed our image by removing its high frequency
components. If we chose to store the image in transform coordinates, we could
save space compared to the original image, since the number of nonzero
coefficients is less.

This is a general principle: we can transform a signal, time series, or image, drop
the coefficients we don’t care about, and store the others. Then when we want
to display the data, we take the inverse transform.

This is particularly useful if we need to transmit the data before display.

Example: Figure 10.24, p.669 in Kammler.
Matlab’s dctdemo.

Conclusions:

• A transform is just a change of coordinates.

• There are many transforms, continuous and discrete.

• They are of interest because they are used, for example, to produce
closed-form solutions of equations, approximate data, filter data, and
compress data.

13

