AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Elliptic PDEs Part 3 Dianne P. O'Leary ©2005 These notes are based on the 2003 textbook of Stig Larsson and Vidar Thomée.

The Elliptic Eigenvalue Problem

The importance of this section lies in three disjoint uses:

- Sometimes, eigenvalue problems arise in applications. For example, we might be interested in the natural frequencies of vibration of a bridge or membrane.
- Eigenfunction expansions can be used to solve elliptic PDEs (spectral methods).
- The theory we develop is the basis for the Fourier / Wavelet discussion we take up at the end of the course.

The plan

- What is an eigenvalue problem?
- Digression: properties of an orthonormal basis for a space.
- How do we solve an eigenproblem numerically?

What is an eigenvalue problem?

Review: Let

$$A = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -4 \end{vmatrix}$$

Notice that

In other words, we have found 4 vectors, called **eigenvectors** of A, that have the special property that multiplication by A just scales the vector.

We call the scale factor the eigenvalue of A, and we can abbreviate the relation

$$A\phi_j = \lambda_j \phi_j$$

where, in our example, $\lambda_1 = -4, \lambda_2 = 1, \lambda_3 = 2$, and $\lambda_4 = 3$ are the eigenvalues and the eigenvectors ϕ_j are the unit vectors.

Some properties of eigenvectors

- When the eigenvalues are distinct, the eigenvectors are unique, except that they can be scaled by any nonzero number. We will assume that ||φ_j|| = 1.
- The eigenvectors are also linearly independent, so they form a basis for \mathcal{R}^n .
- In fact, if A is symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal.
- Jargon: If all of the eigenvalues are positive, we say that A is positive definite.
- The smallest eigenvalue λ_1 is the value of the function

$$\min_{x \neq 0} \frac{x^T A x}{x^T x}$$

and this value is achieved for $x = \phi_1$

• The other eigenvalues can also be characterized as solutions to minimization problems (or maximization problems).

The elliptic eigenvalue problem

Now, as an example, let

$$\mathcal{A}u = -u'',$$

and require u(0) = u(1) = 0.

Notice that for $j = 1, 2, \ldots,$

$$A\sin(j\pi x) = (j\pi)^2\sin(j\pi x).$$

In other words, we have found functions $\phi_j = \sin(j\pi x)$, called **eigenfunctions** of A, that satisfy the boundary conditions and have the special property that

applying A just scales the function. We call the scale factor the **eigenvalue** of A, and we can abbreviate the relation as

$$\mathcal{A}\phi_j = \lambda_j \phi_j$$

where $\lambda_i = (j\pi)^2$.

All of the properties that we listed for eigenvectors also hold for eigenfunctions.

Formulating the elliptic eigenvalue problem

Strong formulation: Given A and homogeneous Dirichlet boundary conditions, find numbers λ and functions $\phi \in H_0^1$ satisfying

 $\mathcal{A}\phi = \lambda\phi.$

We'll assume in this chapter that the operator is just $\mathcal{A}\phi = - \bigtriangledown \cdot (a \bigtriangledown \phi) + c\phi$.

(In fact, your book assumes $\mathcal{A}\phi = - \bigtriangledown^2 \phi$.)

Weak formulation: Given A, find numbers λ and functions $\phi \in H_0^1$ satisfying

 $a(\phi, v) = \lambda(\phi, v)$

for all $v\in H^1_0,$ where $a(\phi,v)$ and (ϕ,v) are defined as before.

Some properties

Theorem 6.1: (p. 79) 6.1a: The eigenvalues of \mathcal{A} are positive. 6.1b: If $\mathcal{A}\phi = \lambda\phi$ and $\mathcal{A}\psi = \nu\psi$ and $\lambda \neq \nu$, then $(\phi, \psi) = 0$.

Proof:

6.1a: Suppose $\mathcal{A}\phi = \lambda\phi$. Then

$$0 < a(\phi, \phi) = \lambda(\phi, \phi)$$

so $\lambda > 0.$

6.1b:

 $a(\phi, \psi) = \lambda(\phi, \psi),$ $a(\psi, \phi) = \nu(\psi, \phi),$

so, subtracting,

 $0 = (\lambda - \nu)(\phi, \psi)$

which forces $(\phi,\psi)=0.$ []

Digression: Orthonormal bases

Begin Digression: So the eigenfunctions are orthogonal. Let's normalize them $(\|\phi_j\| = 1)$ and see what orthogonality + normalization = **orthonormality** tells us.

Definition: Suppose the $\{\phi_j\}$ are orthonormal and are in a space H. Then they form an **orthonormal basis** for H if, given any $v \in H$ and any $\epsilon > 0$ there exist coefficients a_j and an integer N so that

$$\|v - \sum_{j=1}^N a_j \phi_j\| < \epsilon.$$

We need a recipe for finding the coefficients a_j .

Lemma 6.1a: (p. 82) The best approximation to $v \in H$ by the first N functions in the orthonormal basis $\{\phi_i\}$ is

$$v_N = \sum_{j=1}^N (v, \phi_j) \phi_j.$$

Proof: Take any approximation, and compute the residual it makes:

$$\begin{split} \|v - \sum_{j=1}^{N} a_{j} \phi_{j}\|^{2} &= (v - \sum_{j=1}^{N} a_{j} \phi_{j}, v - \sum_{k=1}^{N} a_{k} \phi_{k}) \\ &= (v, v) - 2 \sum_{j=1}^{N} a_{j} (v, \phi_{j}) + \sum_{k=1}^{N} \sum_{j=1}^{N} a_{k} a_{j} (\phi_{\mathbf{k}}, \phi_{\mathbf{j}}) \\ &= (v, v) - 2 \sum_{j=1}^{N} a_{j} (v, \phi_{j}) + \sum_{j=1}^{N} a_{j}^{2} \\ &= (v, v) + \sum_{j=1}^{N} (a_{j} - (v, \phi_{j}))^{2} - \sum_{j=1}^{N} (v, \phi_{j})^{2}, \end{split}$$

and we make this as small as possible by making the middle term zero, setting $a_j = (v, \phi_j)$. []

Lemma 6.1b: Bessel's inequality (p. 82) For all $v \in H$, if $\{\phi_j\}$ is a set of orthonormal functions in H, then

$$\sum_{j=1}^{\infty} (v, \phi_j)^2 \le \|v\|^2.$$

Proof: For our choice of coefficients a_1, \ldots, a_N ,

$$0 \le \|v - \sum_{j=1}^{N} a_j \phi_j\|^2 = (v, v) + \sum_{j=1}^{N} (a_j - (v, \phi_j))^2 - \sum_{j=1}^{N} (v, \phi_j)^2 = (v, v) - \sum_{j=1}^{N} (v, \phi_j)^2,$$

so
$$\sum_{j=1}^{N} (v, \phi_j)^2 \le (v, v).$$

Take the limit as $N \to \infty$. []

Lemma 6.1c: Parseval's Relation (p. 82) For all $v \in H$, if $\{\phi_j\}$ is an orthonormal basis for H, then

$$\sum_{j=1}^{\infty} (v, \phi_j)^2 = \|v\|^2.$$

Proof: For an orthonormal basis, the v_N gets arbitrarily close to v, so the norm must converge. []

End of digression.

A few more facts about eigenvalues and eigenfunctions

The following facts are proven in your book when $\mathcal{A} = -\nabla^2$, but we will take them on faith for all elliptic operators:

- If \mathcal{A} has an infinite number of eigenvalues, then $\lambda_n \to \infty$. (Thm. 6.3, p. 81)
- If \mathcal{A} has an infinite number of eigenvalues, then the eigenfunctions form an orthonormal basis for L_2 , and

$$a(v,v) = \sum_{j=1}^{\infty} \lambda_j (v,\phi_j)^2 < \infty$$

if and only if $v \in H_0^1$. (Thm. 6.4, p. 83)

• Min-Max Characterization of Eigenvalues:

$$\lambda_n = \min_{V_n} \max_{v \in V_n} \frac{a(v, v)}{(v, v)}$$

where V_n varies over all subspaces of H_0^1 of dimension n. (Thm. 6.5, p. 84)

• Monotonicity: If $\Omega \subset \tilde{\Omega}$, then $\lambda_n(\Omega) \ge \lambda_n(\tilde{\Omega})$. (p. 84)

Numerical solution of the elliptic eigenproblem

Idea:

- Replace A by A_h , where A_h is the finite difference matrix or finite element stiffness matrix.
- Use the eigenvalues $\lambda_{n,h}$ of \mathcal{A}_h as approximations to the smallest eigenvalues of \mathcal{A} .
- For finite differences, the eigenvectors of A_h contain approximate values of the eigenfunctions at the mesh points.
- For finite elements, the eigenvectors of A_h contain coefficients in an expansion of the eigenfunction in the finite element basis.

We'll just consider the finite element approximation.

Accuracy of the computed eigenvalues

Theorem 6.7: (p. 90) Notation:

- $\lambda_{n,h}$ = eigenvalue n of A_h .
- λ_n = eigenvalue n of \mathcal{A} .

There exist constants C and h_0 , depending on n, such that when $h < h_0$,

$$\lambda_n \le \lambda_{n,h} \le \lambda_n + Ch^2.$$

Proof of 1st inequality:

$$\lambda_n = \min_{V_n} \max_{v \in V_n} \frac{a(v, v)}{(v, v)}$$
$$\leq \min_{V_n \subset S_h} \max_{v \in V_n} \frac{a(v, v)}{(v, v)}$$
$$= \lambda_{n,h}.$$

We'll take the 2nd inequality on faith. []

Accuracy of the computed eigenfunctions

Theorem: (extension of Theorem 6.8, p. 92) Notation:

- φ_{n,h} = function obtained from the eigenvector of A_h (piecewise linear basis functions) corresponding to a simple eigenvalue λ_{n,h}.
- ϕ_n = eigenfunction of \mathcal{A} corresponding to a simple eigenvalue λ_n .

There exist constants C and h_0 , depending on n, such that when $h < h_0$,

$$\|\phi_{n,h} - \phi_n\| \le Ch^2$$