
Randal E. Bryant

Carnegie Mellon University

CS:APP

CS:APP Chapter 4CS:APP Chapter 4
Computer ArchitectureComputer Architecture

Wrap-UpWrap-Up

http://csapp.cs.cmu.edu

– 2 – CS:APP

Overview
Wrap-Up of PIPE DesignWrap-Up of PIPE Design

 Performance analysis
 Fetch stage design
 Exceptional conditions

Modern High-Performance ProcessorsModern High-Performance Processors
 Out-of-order execution

– 3 – CS:APP

Performance Metrics
Clock rateClock rate

 Measured in Megahertz or Gigahertz
 Function of stage partitioning and circuit design

 Keep amount of work per stage small

Rate at which instructions executedRate at which instructions executed
 CPI: cycles per instruction
 On average, how many clock cycles does each instruction

require?
 Function of pipeline design and benchmark programs

 E.g., how frequently are branches mispredicted?

– 4 – CS:APP

CPI for PIPE
CPI CPI ≈≈ 1.0 1.0

 Fetch instruction each clock cycle
 Effectively process new instruction almost every cycle

 Although each individual instruction has latency of 5 cycles

CPI CPI >> 1.0 1.0
 Sometimes must stall or cancel branches

Computing CPIComputing CPI
 C clock cycles
 I instructions executed to completion
 B bubbles injected (C = I + B)

CPI = C/I = (I+B)/I = 1.0 + B/I
 Factor B/I represents average penalty due to bubbles

– 5 – CS:APP

CPI for PIPE (Cont.)
B/I = LP + MP + RP

 LP: Penalty due to load/use hazard stalling
 Fraction of instructions that are loads 0.25
 Fraction of load instructions requiring stall 0.20
 Number of bubbles injected each time 1
⇒ LP = 0.25 * 0.20 * 1 = 0.05

 MP: Penalty due to mispredicted branches
 Fraction of instructions that are cond. jumps 0.20
 Fraction of cond. jumps mispredicted 0.40
 Number of bubbles injected each time 2
⇒ MP = 0.20 * 0.40 * 2 = 0.16

 RP: Penalty due to ret instructions
 Fraction of instructions that are returns 0.02
 Number of bubbles injected each time 3
⇒ RP = 0.02 * 3 = 0.06

 Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
⇒ CPI = 1.27 (Not bad!)

Typical Values

– 6 – CS:APP

Fetch Logic Revisited
During Fetch CycleDuring Fetch Cycle

Select PC
Read bytes from

instruction memory
Examine icode to

determine
instruction length

Increment PC

TimingTiming
 Steps 2 & 4 require

significant amount
of time F

D rB

M_icode

Predict
PC

valC valPicode ifun rA

Instruction
memory

Instruction
memory

PC
increment

PC
increment

predPC

Need
regids

Need
valC

Instr
valid

AlignAlignSplitSplit

Bytes 1-5Byte 0

Select
PC

M_Bch

M_valA

W_icode

W_valM

– 7 – CS:APP

Standard Fetch Timing

 Must Perform Everything in Sequence
 Can’t compute incremented PC until know how much to

increment it by

Select PC

Mem. Read Increment

need_regids, need_valC

1 clock cycle

– 8 – CS:APP

A Fast PC Increment Circuit

3-bit adder

need_ValC

need_regids
0

29-bit
incre-

menter

MUX

High-order 29 bits
Low-order 3 bits

High-order 29 bits Low-order 3 bits

0 1

PC

incrPC

Slow Fast

carry

– 9 – CS:APP

Modified Fetch Timing

29-Bit 29-Bit IncrementerIncrementer
 Acts as soon as PC selected
 Output not needed until final MUX
 Works in parallel with memory read

Select PC

Mem. Read

Incrementer

need_regids, need_valC
3-bit add

MUX

1 clock cycle

Standard cycle

– 10 – CS:APP

More Realistic Fetch Logic

Fetch BoxFetch Box
 Integrated into instruction cache
 Fetches entire cache block (16 or 32 bytes)
 Selects current instruction from current block
 Works ahead to fetch next block

 As reaches end of current block
 At branch target

Instruction
Cache

Instruction
Cache

Bytes 1-5Byte 0

Current Block

Next Block

Current
Instruction

Current
Instruction

Instr.
Length

Instr.
Length

Fetch
Control

Fetch
Control

Other PC Controls

– 11 – CS:APP

Exceptions
 Conditions under which pipeline cannot continue normal

operation

CausesCauses
 Halt instruction (Current)
 Bad address for instruction or data (Previous)
 Invalid instruction (Previous)
 Pipeline control error (Previous)

Desired ActionDesired Action
 Complete some instructions

 Either current or previous (depends on exception type)
 Discard others
 Call exception handler

 Like an unexpected procedure call

– 12 – CS:APP

Exception Examples

Detect in Fetch StageDetect in Fetch Stage

 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # invalid address

 jmp $-1 # Invalid jump target

 .byte 0xFF # Invalid instruction code

 halt # Halt instruction

Detect in Memory StageDetect in Memory Stage

– 13 – CS:APP

Exceptions in Pipeline Processor #1

Desired BehaviorDesired Behavior
 rmmovl should cause exception

 # demo-exc1.ys
 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # Invalid address
 nop
 .byte 0xFF # Invalid instruction code

0x000: irmovl $100,%eax

1 2 3 4

F D E M
F D E0x006: rmmovl %eax,0x1000(%eax)

0x00c: nop
0x00d: .byte 0xFF

F D
F

W

5

M
E
D

Exception detected

Exception detected

– 14 – CS:APP

Exceptions in Pipeline Processor #2

Desired BehaviorDesired Behavior
 No exception should occur

 # demo-exc2.ys
 0x000: xorl %eax,%eax # Set condition codes
 0x002: jne t # Not taken
 0x007: irmovl $1,%eax
 0x00d: irmovl $2,%edx
 0x013: halt
 0x014: t: .byte 0xFF # Target

0x000: xorl %eax,%eax

1 2 3

F D E
F D0x002: jne t

0x014: t: .byte 0xFF
0x???: (I’m lost!)

F

Exception detected
0x007: irmovl $1,%eax

4

M
E

F
D

W

5

M

D
F

E
E
D

M

6

M
E

W

7

W
M

8

W

9

– 15 – CS:APP

Maintaining Exception Ordering

 Add exception status field to pipeline registers
 Fetch stage sets to either “AOK,” “ADR” (when bad fetch

address), or “INS” (illegal instruction)
 Decode & execute pass values through
 Memory either passes through or sets to “ADR”
 Exception triggered only when instruction hits write back

F predPC

W icode valE valM dstE dstMexc

M Bchicode valE valA dstE dstMexc

E icode ifun valC valA valB dstE dstM srcA srcBexc

D rB valC valPicode ifun rAexc

– 16 – CS:APP

Side Effects in Pipeline Processor

Desired BehaviorDesired Behavior
 rmmovl should cause exception
 No following instruction should have any effect

 # demo-exc3.ys
 irmovl $100,%eax
 rmmovl %eax,0x10000(%eax) # invalid address
 addl %eax,%eax # Sets condition codes

0x000: irmovl $100,%eax

1 2 3 4

F D E M
F D E0x006: rmmovl %eax,0x1000(%eax)

0x00c: addl %eax,%eax F D

W

5

M
E

Exception detected

Condition code set

– 17 – CS:APP

Avoiding Side Effects
Presence of Exception Should Disable State UpdatePresence of Exception Should Disable State Update

 When detect exception in memory stage
 Disable condition code setting in execute
 Must happen in same clock cycle

 When exception passes to write-back stage
 Disable memory write in memory stage
 Disable condition code setting in execute stage

ImplementationImplementation
 Hardwired into the design of the PIPE simulator
 You have no control over this

– 18 – CS:APP

Rest of Exception Handling
Calling Exception HandlerCalling Exception Handler

 Push PC onto stack
 Either PC of faulting instruction or of next instruction
 Usually pass through pipeline along with exception status

 Jump to handler address
 Usually fixed address
 Defined as part of ISA

ImplementationImplementation
 Haven’t tried it yet!

– 19 – CS:APP

Modern CPU Design

ExecutionExecution

Functional

Units

Instruction ControlInstruction Control

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Instruction

Cache

Data

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Retirement

Unit

Register

File

Register

Updates

– 20 – CS:APP

Instruction Control

Grabs Instruction Bytes From MemoryGrabs Instruction Bytes From Memory
 Based on Current PC + Predicted Targets for Predicted Branches
 Hardware dynamically guesses whether branches taken/not taken

and (possibly) branch target

Translates Instructions Into Translates Instructions Into OperationsOperations
 Primitive steps required to perform instruction
 Typical instruction requires 1–3 operations

Converts Register References Into Converts Register References Into TagsTags
 Abstract identifier linking destination of one operation with sources

of later operations

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

– 21 – CS:APP

Execution
Unit

 Multiple functional units
 Each can operate in independently

 Operations performed as soon as operands available
 Not necessarily in program order
 Within limits of functional units

 Control logic
 Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Data
Cache

Prediction
OK?

DataData
Addr. Addr.

General
Integer

Operation Results

Register
Updates

Operations

– 22 – CS:APP

CPU Capabilities of Pentium III
Multiple Instructions Can Execute in ParallelMultiple Instructions Can Execute in Parallel

 1 load
 1 store
 2 integer (one may be branch)
 1 FP Addition
 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be PipelinedSome Instructions Take > 1 Cycle, but Can be Pipelined
 Instruction Latency Cycles/Issue
 Load / Store 3 1
 Integer Multiply 4 1
 Integer Divide 36 36
 Double/Single FP Multiply 5 2
 Double/Single FP Add 3 1
 Double/Single FP Divide 38 38

PentiumPro Block Diagram
P6 P6 MicroarchitectureMicroarchitecture

 PentiumPro
 Pentium II
 Pentium III

Microprocessor Report
2/16/95

– 24 – CS:APP

PentiumPro Operation
Translates instructions dynamically into Translates instructions dynamically into ““UopsUops””

 118 bits wide
 Holds operation, two sources, and destination

ExecutesExecutes Uops Uops with with ““Out of OrderOut of Order”” engine engine
 Uop executed when

 Operands available
 Functional unit available

 Execution controlled by “Reservation Stations”
 Keeps track of data dependencies between uops
 Allocates resources

– 25 – CS:APP

PentiumPro Branch Prediction
Critical to PerformanceCritical to Performance

 11–15 cycle penalty for misprediction

Branch Target BufferBranch Target Buffer
 512 entries
 4 bits of history
 Adaptive algorithm

 Can recognize repeated patterns, e.g., alternating taken–not
taken

Handling BTB missesHandling BTB misses
 Detect in cycle 6
 Predict taken for negative offset, not taken for positive

 Loops vs. conditionals

– 26 – CS:APP

Example Branch Prediction
Branch HistoryBranch History

 Encode information about prior history of branch
instructions

 Predict whether or not branch will be taken

State MachineState Machine
 Each time branch taken, transition to right
 When not taken, transition to left
 Predict branch taken when in state Yes! or Yes?

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

– 27 – CS:APP

Pentium 4 Block Diagram

 Next generation microarchitecture

Intel Tech. Journal
Q1, 2001

– 28 – CS:APP

Pentium 4 Features
Trace CacheTrace Cache

 Replaces traditional instruction cache
 Caches instructions in decoded form
 Reduces required rate for instruction decoder

Double-Pumped Double-Pumped ALUsALUs
 Simple instructions (add) run at 2X clock rate

Very Deep PipelineVery Deep Pipeline
 20+ cycle branch penalty
 Enables very high clock rates
 Slower than Pentium III for a given clock rate

L2 Cache Instruct.
Decoder

Trace
Cache

IA32
Instrs. uops

Operations

– 29 – CS:APP

Processor Summary
Design TechniqueDesign Technique

 Create uniform framework for all instructions
 Want to share hardware among instructions

 Connect standard logic blocks with bits of control logic

OperationOperation
 State held in memories and clocked registers
 Computation done by combinational logic
 Clocking of registers/memories sufficient to control overall

behavior

Enhancing PerformanceEnhancing Performance
 Pipelining increases throughput and improves resource

utilization
 Must make sure maintains ISA behavior

