
Dynamic Memory Allocation II
Nov 7, 2002

TopicsTopics
 Explicit doubly-linked free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls

class22.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Keeping Track of Free Blocks
 Method 1Method 1: Implicit list using lengths -- links all blocks: Implicit list using lengths -- links all blocks

 Method 2Method 2: Explicit list among the free blocks using: Explicit list among the free blocks using
pointers within the free blockspointers within the free blocks

 Method 3Method 3: Segregated free lists: Segregated free lists
 Different free lists for different size classes

 Method 4Method 4: Blocks sorted by size (not discussed): Blocks sorted by size (not discussed)
 Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 3 – 15-213, F’02

Explicit Free Lists

Use data space for link pointersUse data space for link pointers
 Typically doubly linked
 Still need boundary tags for coalescing

 It is important to realize that links are not necessarily in the
same order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

– 4 – 15-213, F’02

Allocating From Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

– 5 – 15-213, F’02

Freeing With Explicit Free Lists
Insertion policyInsertion policy: Where in the free list do you put a: Where in the free list do you put a

newly freed block?newly freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address

ordered.
 Address-ordered policy

 Insert freed blocks so that free list blocks are always in address
order

» i.e. addr(pred) < addr(curr) < addr(succ)
 Con: requires search
 Pro: studies suggest fragmentation is better than LIFO

– 6 – 15-213, F’02

Freeing With a LIFO Policy

Case 1: a-a-aCase 1: a-a-a
 Insert self at beginning of

free list

Case 2: a-a-fCase 2: a-a-f
 Splice out next, coalesce

self and next, and add to
beginning of free list

pred (p) succ (s)

selfa a

p s

selfa f
before:

p s

fa
after:

– 7 – 15-213, F’02

Freeing With a LIFO Policy (cont)

Case 3: f-a-aCase 3: f-a-a
 Splice out prev, coalesce

with self, and add to
beginning of free list

Case 4: f-a-fCase 4: f-a-f
 Splice out prev and next,

coalesce with self, and
add to beginning of list

p s

selff a
before:

p s

f a
after:

p1 s1

selff f

before:

f
after:

p2 s2

p1 s1 p2 s2

– 8 – 15-213, F’02

Explicit List Summary
Comparison to implicit list:Comparison to implicit list:

 Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

 Slightly more complicated allocate and free since needs to
splice blocks in and out of the list

 Some extra space for the links (2 extra words needed for
each block)

Main use of linked lists is in conjunction withMain use of linked lists is in conjunction with
segregated free listssegregated free lists
 Keep multiple linked lists of different size classes, or

possibly for different types of objects

– 9 – 15-213, F’02

Keeping Track of Free Blocks
Method 1Method 1: : Implicit listImplicit list using lengths -- links all blocks using lengths -- links all blocks

Method 2Method 2: : Explicit listExplicit list among the free blocks using among the free blocks using
pointers within the free blockspointers within the free blocks

Method 3Method 3: : Segregated free listSegregated free list
 Different free lists for different size classes

Method 4Method 4: Blocks sorted by size: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 10 – 15-213, F’02

Segregated Storage
Each Each size classsize class has its own collection of blocks has its own collection of blocks

1-2

3

4

5-8

9-16

 Often have separate size class for every small size (2,3,4,…)
 For larger sizes typically have a size class for each power of 2

– 11 – 15-213, F’02

Simple Segregated Storage
Separate heap and free list for each size classSeparate heap and free list for each size class
No splittingNo splitting
To allocate a block of size n:To allocate a block of size n:

 If free list for size n is not empty,
 allocate first block on list (note, list can be implicit or explicit)

 If free list is empty,
 get a new page
 create new free list from all blocks in page
 allocate first block on list

 Constant time

To free a block:To free a block:
 Add to free list
 If page is empty, return the page for use by another size (optional)

Tradeoffs:Tradeoffs:
 Fast, but can fragment badly

– 12 – 15-213, F’02

Segregated Fits
Array of free lists, each one for some size classArray of free lists, each one for some size class
To allocate a block of size n:To allocate a block of size n:

 Search appropriate free list for block of size m > n
 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)
 If no block is found, try next larger class
 Repeat until block is found

To free a block:To free a block:
 Coalesce and place on appropriate list (optional)

TradeoffsTradeoffs
 Faster search than sequential fits (i.e., log time for power of

two size classes)
 Controls fragmentation of simple segregated storage
 Coalescing can increase search times

 Deferred coalescing can help

– 13 – 15-213, F’02

For More Info on Allocators
D. D. KnuthKnuth, , ““The Art of Computer Programming, SecondThe Art of Computer Programming, Second

EditionEdition””, Addison Wesley, 1973, Addison Wesley, 1973
 The classic reference on dynamic storage allocation

Wilson et al, Wilson et al, ““Dynamic Storage Allocation: A SurveyDynamic Storage Allocation: A Survey
and Critical Reviewand Critical Review””, Proc. 1995 Int, Proc. 1995 Int’’l Workshop onl Workshop on
Memory Management, Memory Management, KinrossKinross, Scotland, Sept, 1995., Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

– 14 – 15-213, F’02

Implicit Memory Management:
Garbage Collection

Garbage collectionGarbage collection: : automatic reclamation of heap-automatic reclamation of heap-
allocated storage -- application never has to freeallocated storage -- application never has to free

Common in functional languages, scripting languages,Common in functional languages, scripting languages,
and modern object oriented languages:and modern object oriented languages:
 Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for CVariants (conservative garbage collectors) exist for C
and C++and C++
 Cannot collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

– 15 – 15-213, F’02

Garbage Collection
How does the memory manager know when memoryHow does the memory manager know when memory

can be freed?can be freed?
 In general we cannot know what is going to be used in the

future since it depends on conditionals
 But we can tell that certain blocks cannot be used if there

are no pointers to them

Need to make certain assumptions about pointersNeed to make certain assumptions about pointers
 Memory manager can distinguish pointers from non-

pointers
 All pointers point to the start of a block
 Cannot hide pointers (e.g., by coercing them to an int, and

then back again)

– 16 – 15-213, F’02

Classical GC algorithms
Mark and sweep collection (McCarthy, 1960)Mark and sweep collection (McCarthy, 1960)

 Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

Copying collection (Copying collection (MinskyMinsky, 1963), 1963)
 Moves blocks (not discussed)

For more information, see For more information, see Jones and Lin, Jones and Lin, ““GarbageGarbage
Collection: Algorithms for Automatic DynamicCollection: Algorithms for Automatic Dynamic
MemoryMemory””, John Wiley & Sons, 1996., John Wiley & Sons, 1996.

– 17 – 15-213, F’02

Memory as a Graph
We view memory as a directed graphWe view memory as a directed graph

 Each block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, locations on the stack, global
variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is A node (block) is reachable if there is a path from any root to that node. if there is a path from any root to that node.
Non-reachable nodes are Non-reachable nodes are garbage garbage (never needed by the application)(never needed by the application)

– 18 – 15-213, F’02

Assumptions For This Lecture
ApplicationApplication

 new(n): returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

Each block will have a header wordEach block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

Instructions used by the Garbage CollectorInstructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b): returns the length of block b, not including the header
 get_roots(): returns all the roots

– 19 – 15-213, F’02

Mark and Sweep Collecting

Can build on top of Can build on top of mallocmalloc/free package/free package
 Allocate using malloc until you “run out of space”

When out of space:When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on all reachable memory
 Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free

– 20 – 15-213, F’02

Mark and Sweep (cont.)
ptr mark(ptr p) {
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // mark all children
 mark(p[i]);
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet(p)
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

– 21 – 15-213, F’02

Conservative Mark and Sweep in C
A conservative collector for C programsA conservative collector for C programs

 Is_ptr() determines if a word is a pointer by checking if it
points to an allocated block of memory.

 But, in C pointers can point to the middle of a block.

So how do we find the beginning of the block?So how do we find the beginning of the block?
 Can use balanced tree to keep track of all allocated blocks

where the key is the location
 Balanced tree pointers can be stored in header (use two

additional words)

header
ptr

head data

left right

size

– 22 – 15-213, F’02

Memory-Related Bugs
DereferencingDereferencing bad pointers bad pointers
Reading Reading uninitialized uninitialized memorymemory
Overwriting memoryOverwriting memory
Referencing nonexistent variablesReferencing nonexistent variables
Freeing blocks multiple timesFreeing blocks multiple times
Referencing freed blocksReferencing freed blocks
Failing to free blocksFailing to free blocks

– 23 – 15-213, F’02

Dereferencing Bad Pointers
The classic The classic scanfscanf bugbug

scanf(“%d”, val);

– 24 – 15-213, F’02

Reading Uninitialized Memory
Assuming that heap data is initialized to zeroAssuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

– 25 – 15-213, F’02

Overwriting Memory
Allocating the (possibly) wrong sized objectAllocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

– 26 – 15-213, F’02

Overwriting Memory
Off-by-one errorOff-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

– 27 – 15-213, F’02

Overwriting Memory
Not checking the max string sizeNot checking the max string size

Basis for classic buffer overflow attacksBasis for classic buffer overflow attacks
 1988 Internet worm
 Modern attacks on Web servers
 AOL/Microsoft IM war

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

– 28 – 15-213, F’02

Overwriting Memory
Referencing a pointer instead of the object it points toReferencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

– 29 – 15-213, F’02

Overwriting Memory
Misunderstanding pointer arithmeticMisunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

– 30 – 15-213, F’02

Referencing Nonexistent Variables
Forgetting that local variables disappear when aForgetting that local variables disappear when a

function returnsfunction returns

int *foo () {
 int val;
 return &val;
}

– 31 – 15-213, F’02

Freeing Blocks Multiple Times
Nasty!Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);

y = malloc(M*sizeof(int));
<manipulate y>
free(x);

– 32 – 15-213, F’02

Referencing Freed Blocks
Evil!Evil!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);
...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

– 33 – 15-213, F’02

Failing to Free Blocks
(Memory Leaks)
Slow, long-term killer!Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

– 34 – 15-213, F’02

Failing to Free Blocks
(Memory Leaks)
Freeing only part of a data structureFreeing only part of a data structure

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head =
 malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

– 35 – 15-213, F’02

Dealing With Memory Bugs
Conventional debugger (Conventional debugger (gdbgdb))

 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

Debugging Debugging mallocmalloc (CSRI (CSRI UToronto UToronto mallocmalloc))
 Wrapper around conventional malloc
 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures
 Some instances of freeing blocks multiple times
 Memory leaks

 Cannot detect all memory bugs
 Overwrites into the middle of allocated blocks
 Freeing block twice that has been reallocated in the interim
 Referencing freed blocks

– 36 – 15-213, F’02

Dealing With Memory Bugs (cont.)
Binary translator (Atom, Purify)Binary translator (Atom, Purify)

 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Can detect all errors as debugging malloc
 Can also check each individual reference at runtime

 Bad pointers
 Overwriting
 Referencing outside of allocated block

Garbage collection (Boehm-Garbage collection (Boehm-Weiser Weiser Conservative GC)Conservative GC)
 Let the system free blocks instead of the programmer.

