
Randal E. Bryant

Carnegie Mellon University

CS:APP

CS:APP Chapter 4CS:APP Chapter 4
Computer ArchitectureComputer Architecture
Logic DesignLogic Design

http://csapp.cs.cmu.edu

– 2 – CS:APP

Overview of Logic Design
Fundamental Hardware RequirementsFundamental Hardware Requirements

 Communication
 How to get values from one place to another

 Computation
 Storage

Bits are Our FriendsBits are Our Friends
 Everything expressed in terms of values 0 and 1
 Communication

 Low or high voltage on wire
 Computation

 Compute Boolean functions
 Storage

 Store bits of information

– 3 – CS:APP

Digital Signals

 Use voltage thresholds to extract discrete values from
continuous signal

 Simplest version: 1-bit signal
 Either high range (1) or low range (0)
 With guard range between them

 Not strongly affected by noise or low quality circuit elements
 Can make circuits simple, small, and fast

Voltage

Time

0 1 0

– 4 – CS:APP

Computing with Logic Gates

 Outputs are Boolean functions of inputs
 Respond continuously to changes in inputs

 With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

– 5 – CS:APP

Combinational Circuits

Acyclic Acyclic Network of Logic GatesNetwork of Logic Gates
 Continously responds to changes on primary inputs
 Primary outputs become (after some delay) Boolean

functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

– 6 – CS:APP

Bit Equality

 Generate 1 if a and b are equal

Hardware Control Language (HCL)Hardware Control Language (HCL)
 Very simple hardware description language

 Boolean operations have syntax similar to C logical operations
 We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

– 7 – CS:APP

Word Equality

 32-bit word size
 HCL representation

 Equality operation
 Generates Boolean value

b31
Bit equal

a31

eq31

b30
Bit equal

a30

eq30

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

– 8 – CS:APP

Bit-Level Multiplexor

 Control signal s
 Data signals a and b
 Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

– 9 – CS:APP

Word Multiplexor

 Select input word A or B
depending on control signal s

 HCL representation
 Case expression
 Series of test : value pairs
 Output value for first

successful test

Word-Level Representation

HCL Representation

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

int Out = [
 s : A;
 1 : B;
];

s

B

A
OutMUX

– 10 – CS:APP

HCL Word-Level Examples

 Find minimum of three
input words

 HCL case expression
 Final case guarantees

match
A

Min3MIN3B
C

int Min3 = [
 A < B && A < C : A;
 B < A && B < C : B;
 1 : C;
];

D0

D3

Out4

s0
s1

MUX4
D2
D1

 Select one of 4 inputs
based on two control
bits

 HCL case expression
 Simplify tests by

assuming sequential
matching

int Out4 = [
 !s1&&!s0: D0;
 !s1 : D1;
 !s0 : D2;
 1 : D3;
];

Minimum of 3 Words

4-Way Multiplexor

– 11 – CS:APP

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

 Combinational logic
 Continuously responding to inputs

 Control signal selects function computed
 Corresponding to 4 arithmetic/logical operations in Y86

 Also computes values for condition codes

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

– 12 – CS:APP

V1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

Storing 1 Bit
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

V2

– 13 – CS:APP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin

V2

Storing 1 Bit (cont.)
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin V1

V2

Vin = V2

Stable 0

Stable 1

Metastable

– 14 – CS:APP

Physical Analogy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin

V2

Stable 0

Stable 1

Metastable

.Stable left . Stable right.

Metastable

– 15 – CS:APP

Storing and Accessing 1 Bit

Q+

Q–

R

S

R-S Latch

Q+

Q–

R

S

Q+

Q–

R

S

Resetting
1

0

1 0

0 1

Q+

Q–

R

S

Q+

Q–

R

S

Setting
0

1

0 1

1 0

Q+

Q–

R

S

Q+

Q–

R

S

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

– 16 – CS:APP

1-Bit Latch
D Latch

Q+

Q–

R

S

D

C

Data

Clock

Latching

1

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d !d !d d

d d !d
0

Storing

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d q

!q

!q

q0

0

– 17 – CS:APP

Transparent 1-Bit Latch

 When in latching mode, combinational propogation from D
to Q+ and Q–

 Value latched depends on value of D as C falls

Latching

1

Q+

Q–

R

S

D

C

Q+

Q–

R

S

D

C

d !d !d !d d

d d !d

C

D

Q+
Time

Changing D

– 18 – CS:APP

Edge-Triggered Latch

 Only in latching mode
for brief period
 Rising clock edge

 Value latched depends
on data as clock rises

 Output remains stable at
all other times

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

C

D

Q+

Time

T

– 19 – CS:APP

Registers

 Stores word of data
 Different from program registers seen in assembly code

 Collection of edge-triggered latches
 Loads input on rising edge of clock

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

– 20 – CS:APP

Register Operation

 Stores data bits
 For most of time acts as barrier between input and output
 As clock rises, loads input

State = x
Rising
clock

Output = xInput = y
x

State = y

Output = y
y

– 21 – CS:APP

State Machine Example

 Accumulator
circuit

 Load or
accumulate on
each cycle

Comb. Logic

A
L
U

0

Out
MUX

0

1

Clock

In
Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

– 22 – CS:APP

Random-Access Memory

 Stores multiple words of memory
 Address input specifies which word to read or write

 Register file
 Holds values of program registers
 %eax, %esp, etc.
 Register identifier serves as address

» ID 8 implies no read or write performed
 Multiple Ports

 Can read and/or write multiple words in one cycle
» Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

– 23 – CS:APP

Register File Timing
ReadingReading

 Like combinational logic
 Output data generated based on

input address
 After some delay

WritingWriting
 Like register
 Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

W dstW

valW

Clock

x2
Rising
clock Register

file
W dstW

valW

Clock

y2

x2

x

2

– 24 – CS:APP

Hardware Control Language
 Very simple hardware description language
 Can only express limited aspects of hardware operation

 Parts we want to explore and modify

Data TypesData Types
 bool: Boolean

 a, b, c, …
 int: words

 A, B, C, …
 Does not specify word size---bytes, 32-bit words, …

StatementsStatements
 bool a = bool-expr ;
 int A = int-expr ;

– 25 – CS:APP

HCL Operations
 Classify by type of value returned

Boolean ExpressionsBoolean Expressions
 Logic Operations

 a && b, a || b, !a
 Word Comparisons

 A == B, A != B, A < B, A <= B, A >= B, A > B
 Set Membership

 A in { B, C, D }
» Same as A == B || A == C || A == D

Word ExpressionsWord Expressions
 Case expressions

 [a : A; b : B; c : C]
 Evaluate test expressions a, b, c, … in sequence
 Return word expression A, B, C, … for first successful test

– 26 – CS:APP

Summary
ComputationComputation

 Performed by combinational logic
 Computes Boolean functions
 Continuously reacts to input changes

StorageStorage
 Registers

 Hold single words
 Loaded as clock rises

 Random-access memories
 Hold multiple words
 Possible multiple read or write ports
 Read word when address input changes
 Write word as clock rises

