
Virtual Memory
Oct. 29, 2002

TopicsTopics
 Motivations for VM
 Address translation
 Accelerating translation with TLBs

class19.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Motivations for Virtual Memory
Use Physical DRAM as a Cache for the DiskUse Physical DRAM as a Cache for the Disk

 Address space of a process can exceed physical memory size
 Sum of address spaces of multiple processes can exceed

physical memory

Simplify Memory ManagementSimplify Memory Management
 Multiple processes resident in main memory.

 Each process with its own address space
 Only “active” code and data is actually in memory

 Allocate more memory to process as needed.

Provide ProtectionProvide Protection
 One process can’t interfere with another.

 because they operate in different address spaces.
 User process cannot access privileged information

 different sections of address spaces have different permissions.

– 3 – 15-213, F’02

Motivation #1: DRAM a “Cache” for
Disk
Full address space is quite large:Full address space is quite large:

 32-bit addresses: ~4,000,000,000 (4 billion) bytes
 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)

bytes

Disk storage is ~300X cheaper than DRAM storageDisk storage is ~300X cheaper than DRAM storage
 80 GB of DRAM: ~ $33,000
 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner,To access large amounts of data in a cost-effective manner,
the bulk of the data must be stored on diskthe bulk of the data must be stored on disk

1GB: ~$200 80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

– 4 – 15-213, F’02

Levels in Memory Hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
line size:

32 B
1 ns

8 B

Register Cache Memory Disk Memory
32 KB-4MB
2 ns
$125/MB
32 B

1024 MB
30 ns
$0.20/MB
4 KB

100 GB
8 ms
$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

– 5 – 15-213, F’02

DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAMDRAM vs. disk is more extreme than SRAM vs. DRAM

 Access latencies:
 DRAM ~10X slower than SRAM
 Disk ~100,000X slower than DRAM

 Importance of exploiting spatial locality:
 First byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to
DRAM

 Bottom line:
 Design decisions made for DRAM caches driven by enormous cost

of misses

DRAMSRAM Disk

– 6 – 15-213, F’02

Impact of Properties on Design
If DRAM was to be organized similar to an SRAM cache, how wouldIf DRAM was to be organized similar to an SRAM cache, how would

we set the following design parameters?we set the following design parameters?
 Line size?

Large, since disk better at transferring large blocks
 Associativity?

High, to mimimize miss rate
 Write through or write back?

Write back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:What would the impact of these choices be on:
 miss rate

Extremely low. << 1%
 hit time

Must match cache/DRAM performance
 miss latency

Very high. ~20ms
 tag storage overhead

Low, relative to block size

– 7 – 15-213, F’02

Locating an Object in a “Cache”
SRAM CacheSRAM Cache

 Tag stored with cache line
 Maps from cache block to memory blocks

 From cached to uncached form
 Save a few bits by only storing tag

 No tag for block not in cache
 Hardware retrieves information

 can quickly match against multiple tags

X
Object Name

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

– 8 – 15-213, F’02

Locating an Object in “Cache” (cont.)

Data
243
 17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
On Disk

“Cache”Page Table

DRAM CacheDRAM Cache
 Each allocated page of virtual memory has entry in page table
 Mapping from virtual pages to physical pages

 From uncached form to cached form
 Page table entry even if page not in memory

 Specifies disk address
 Only way to indicate where to find page

 OS retrieves information

– 9 – 15-213, F’02

A System with Physical Memory Only
Examples:Examples:

 most Cray machines, early PCs, nearly all embedded
systems, etc.

 Addresses generated by the CPU correspond directly to bytes in
physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

– 10 – 15-213, F’02

A System with Virtual Memory
Examples:Examples:

 workstations, servers, modern PCs, etc.

 Address Translation: Hardware converts virtual addresses to
physical addresses via OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses Physical

Addresses

– 11 – 15-213, F’02

Page Faults (like “Cache Misses”)
What if an object is on disk rather than in memory?What if an object is on disk rather than in memory?

 Page table entry indicates virtual address not in memory
 OS exception handler invoked to move data from disk into

memory
 current process suspends, others can resume
 OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

Before fault After fault

– 12 – 15-213, F’02

Servicing a Page Fault
Processor Signals ControllerProcessor Signals Controller

 Read block of length P
starting at disk address X and
store starting at memory
address Y

Read OccursRead Occurs
 Direct Memory Access (DMA)
 Under control of I/O controller

I / O Controller SignalsI / O Controller Signals
CompletionCompletion
 Interrupt processor
 OS resumes suspended

process

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory
I/O

controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

– 13 – 15-213, F’02

Motivation #2: Memory Management
Multiple processes can reside in physical memory.Multiple processes can reside in physical memory.
How do we resolve address conflicts?How do we resolve address conflicts?

 what if two processes access something at the same
address?

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
 user code

the “brk” ptr

Linux/x86
process
memory
image

– 14 – 15-213, F’02

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

Solution: Separate Virt. Addr. Spaces
 Virtual and physical address spaces divided into equal-sized

blocks
 blocks are called “pages” (both virtual and physical)

 Each process has its own virtual address space
 operating system controls how virtual pages as assigned to

physical memory

...

...

Virtual
Address
Space for
Process 2:

– 15 – 15-213, F’02

Contrast: Macintosh Memory Model
MAC OS 1MAC OS 1––99

 Does not use traditional virtual memory

All program objects accessed through All program objects accessed through ““handleshandles””
 Indirect reference through pointer table
 Objects stored in shared global address space

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”

– 16 – 15-213, F’02

Macintosh Memory Management
Allocation / Allocation / DeallocationDeallocation

 Similar to free-list management of malloc/free

CompactionCompaction
 Can move any object and just update the (unique) pointer in

pointer table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

– 17 – 15-213, F’02

Mac vs. VM-Based Memory Mgmt
Allocating, Allocating, deallocatingdeallocating, and moving memory:, and moving memory:

 can be accomplished by both techniques

Block sizes:Block sizes:
 Mac: variable-sized

 may be very small or very large
 VM: fixed-size

 size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:Allocating contiguous chunks of memory:
 Mac: contiguous allocation is required
 VM: can map contiguous range of virtual addresses to

disjoint ranges of physical addresses

ProtectionProtection
 Mac: “wild write” by one process can corrupt another’s data

– 18 – 15-213, F’02

MAC OS X
““ModernModern”” Operating System Operating System

 Virtual memory with protection
 Preemptive multitasking

 Other versions of MAC OS require processes to voluntarily
relinquish control

Based on MACH OSBased on MACH OS
 Developed at CMU in late 1980’s

– 19 – 15-213, F’02

Motivation #3: Protection
Page table entry contains access rights informationPage table entry contains access rights information

 hardware enforces this protection (trap into OS if violation
occurs) Page Tables

Process i:

Physical AddrRead? Write?
 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•••

•••
•••

VP 0:

VP 1:

VP 2:

– 20 – 15-213, F’02

VM Address Translation
Virtual Address SpaceVirtual Address Space

 V = {0, 1, …, N–1}

Physical Address SpacePhysical Address Space
 P = {0, 1, …, M–1}
 M < N

Address TranslationAddress Translation
 MAP: V → P U {∅}
 For virtual address a:

 MAP(a) = a’ if data at virtual address a at physical address a’
in P

 MAP(a) = ∅ if data at virtual address a not in physical memory
» Either invalid or stored on disk

– 21 – 15-213, F’02

VM Address Translation: Hit

Processor

Hardware
Addr Trans
Mechanism

Main
Memorya

a'

physical addressvirtual address part of the
on-chip
memory mgmt unit (MMU)

– 22 – 15-213, F’02

VM Address Translation: Miss

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅

page fault

physical address OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
memory mgmt unit (MMU)

– 23 – 15-213, F’02

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

VM Address Translation
ParametersParameters

 P = 2p = page size (bytes).
 N = 2n = Virtual address limit
 M = 2m = Physical address limit

– 24 – 15-213, F’02

Page Tables
Memory resident

page table
(physical page

 or disk address) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

– 25 – 15-213, F’02

Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

– 26 – 15-213, F’02

Page Table Operation
TranslationTranslation

 Separate (set of) page table(s) per process
 VPN forms index into page table (points to a page table entry)

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

– 27 – 15-213, F’02

Page Table Operation
Computing Physical AddressComputing Physical Address

 Page Table Entry (PTE) provides information about page
 if (valid bit = 1) then the page is in memory.

» Use physical page number (PPN) to construct address
 if (valid bit = 0) then the page is on disk

» Page fault

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

– 28 – 15-213, F’02

Page Table Operation
Checking ProtectionChecking Protection

 Access rights field indicate allowable access
 e.g., read-only, read-write, execute-only
 typically support multiple protection modes (e.g., kernel vs. user)

 Protection violation fault if user doesn’t have necessary
permission

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

– 29 – 15-213, F’02

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches Most Caches ““Physically AddressedPhysically Addressed””
 Accessed by physical addresses
 Allows multiple processes to have blocks in cache at same time
 Allows multiple processes to share pages
 Cache doesn’t need to be concerned with protection issues

 Access rights checked as part of address translation

Perform Address Translation Before Cache LookupPerform Address Translation Before Cache Lookup
 But this could involve a memory access itself (of the PTE)
 Of course, page table entries can also become cached

– 30 – 15-213, F’02

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
““Translation Translation LookasideLookaside Buffer Buffer”” (TLB) (TLB)

 Small hardware cache in MMU
 Maps virtual page numbers to physical page numbers
 Contains complete page table entries for small number of

pages

– 31 – 15-213, F’02

Address Translation with a TLB
virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

– 32 – 15-213, F’02

Simple Memory System Example
AddressingAddressing

 14-bit virtual addresses
 12-bit physical address
 Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

– 33 – 15-213, F’02

Simple Memory System Page Table
 Only show first 16 entries

110D0D0F0F00––0707
1111110E0E00––0606
112D2D0D0D1116160505
00––0C0C00––0404
00––0B0B1102020303
1109090A0A1133330202
111717090900––0101
11131308081128280000

ValidValidPPNPPNVPNVPNValidValidPPNPPNVPNVPN

– 34 – 15-213, F’02

Simple Memory System TLB
TLBTLB

 16 entries
 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00––02021134340A0A110D0D030300––070733
00––030300––060600––080800––020222
00––0A0A00––040400––0202112D2D030311
110202070700––0000110D0D090900––030300

ValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagSetSet

– 35 – 15-213, F’02

Simple Memory System Cache
CacheCache

 16 lines
 4-byte line size
 Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––––––001414FF0303DFDFC2C2111111161677
D3D31B1B77778383111313EE––––––––00313166
1515343496960404111616DD1D1DF0F072723636110D0D55
––––––––001212CC09098F8F6D6D434311323244
––––––––000B0BBB––––––––00363633

3B3BDADA15159393112D2DAA0808040402020000111B1B22
––––––––002D2D99––––––––00151511
8989515100003A3A11242488111123231111999911191900
B3B3B2B2B1B1B0B0ValidValidTagTagIdxIdxB3B3B2B2B1B1B0B0ValidValidTagTagIdxIdx

– 36 – 15-213, F’02

Address Translation Example #1
Virtual Address Virtual Address 0x03D40x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 37 – 15-213, F’02

Address Translation Example #2
Virtual Address Virtual Address 0x0B8F0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 38 – 15-213, F’02

Address Translation Example #3
Virtual Address Virtual Address 0x00400x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 39 – 15-213, F’02

Multi-Level Page Tables
Given:Given:

 4KB (212) page size
 32-bit address space
 4-byte PTE

Problem:Problem:
 Would need a 4 MB page table!

 220 *4 bytes

Common solutionCommon solution
 multi-level page tables
 e.g., 2-level table (P6)

 Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

 Level 2 table: 1024 entries, each of
which points to a page

Level 1
Table

...

Level 2
Tables

– 40 – 15-213, F’02

Main Themes
ProgrammerProgrammer’’s Views View

 Large “flat” address space
 Can allocate large blocks of contiguous addresses

 Processor “owns” machine
 Has private address space
 Unaffected by behavior of other processes

System ViewSystem View
 User virtual address space created by mapping to set of

pages
 Need not be contiguous
 Allocated dynamically
 Enforce protection during address translation

 OS manages many processes simultaneously
 Continually switching among processes
 Especially when one must wait for resource

» E.g., disk I/O to handle page fault

