
Time Measurement
Oct. 24, 2002

TopicsTopics
 Time scales
 Interval counting
 Cycle counters
 K-best measurement scheme

class18.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Computer Time Scales

Two Fundamental Time ScalesTwo Fundamental Time Scales
 Processor: ~10–9 sec.
 External events: ~10–2 sec.

Keyboard input
Disk seek
Screen refresh

ImplicationImplication
 Can execute many

instructions while waiting
for external event to occur

 Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

– 3 – 15-213, F’02

Measurement Challenge
How Much Time Does Program X Require?How Much Time Does Program X Require?

 CPU time
 How many total seconds are used when executing X?
 Measure used for most applications
 Small dependence on other system activities

 Actual (“Wall”) Time
 How many seconds elapse between the start and the

completion of X?
 Depends on system load, I/O times, etc.

Confounding FactorsConfounding Factors
 How does time get measured?
 Many processes share computing resources

 Transient effects when switching from one process to another
 Suddenly, the effects of alternating among processes become

noticeable

– 4 – 15-213, F’02

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

– 5 – 15-213, F’02

Activity Periods: Light Load

 Most of the time spent
executing one process

 Periodic interrupts every
10ms
 Interval timer
 Keep system from

executing one process to
exclusion of others

 Other interrupts
 Due to I/O activity

 Inactivity periods
 System time spent

processing interrupts
 ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 6 – 15-213, F’02

Activity Periods: Heavy Load

 Sharing processor with one other active process
 From perspective of this process, system appears to be

“inactive” for ~50% of the time
 Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 7 – 15-213, F’02

Interval Counting
OS Measures Runtimes Using Interval TimerOS Measures Runtimes Using Interval Timer

 Maintain 2 counts per process
 User time
 System time

 Each time get timer interrupt, increment counter for
executing process
 User time if running in user mode
 System time if running in kernel mode

– 8 – 15-213, F’02

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

– 9 – 15-213, F’02

Unix time Command

 0.82 seconds user time
 82 timer intervals

 0.30 seconds system time
 30 timer intervals

 1.32 seconds wall time
 84.8% of total was used running these processes

 (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

– 10 – 15-213, F’02

Accuracy of Interval Counting

Worst Case AnalysisWorst Case Analysis
 Timer Interval = δ
 Single process segment measurement can be off by ±δ
 No bound on error for multiple segments

 Could consistently underestimate, or consistently overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

– 11 – 15-213, F’02

Accuracy of Int. Cntg. (cont.)

Average Case AnalysisAverage Case Analysis
 Over/underestimates tend to balance out
 As long as total run time is sufficiently large

 Min run time ~1 second
 100 timer intervals

 Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

– 12 – 15-213, F’02

Cycle Counters

 Most modern systems have built in registers that are
incremented every clock cycle
 Very fine grained
 Maintained as part of process state

» In Linux, counts elapsed global time
 Special assembly code instruction to access
 On (recent model) Intel machines:

 64 bit counter.
 RDTSC instruction sets %edx to high order 32-bits, %eax to low

order 32-bits

– 13 – 15-213, F’02

Cycle Counter Period

Wrap Around Times for 550 MHz machineWrap Around Times for 550 MHz machine
 Low order 32 bits wrap around every 232 / (550 * 106) = 7.8

seconds
 High order 64 bits wrap around every 264 / (550 * 106) =

33539534679 seconds
 1065 years

For 2 GHz machineFor 2 GHz machine
 Low order 32-bits every 2.1 seconds
 High order 64 bits every 293 years

– 14 – 15-213, F’02

Measuring with Cycle Counter
IdeaIdea

 Get current value of cycle counter
 store as pair of unsigned’s cyc_hi and cyc_lo

 Compute something
 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

– 15 – 15-213, F’02

Accessing the Cycle Cntr.
 GCC allows inline assembly code with mechanism for

matching registers with program variables
 Code only works on x86 machine compiling with GCC

 Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 16 – 15-213, F’02

Closer Look at Extended ASM

Instruction StringInstruction String
 Series of assembly commands

 Separated by “;” or “\n”
 Use “%%” where normally would use “%”

asm(“Instruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 17 – 15-213, F’02

Closer Look at Extended ASM

Output ListOutput List
 Expressions indicating destinations for values %0, %1, …, %j

 Enclosed in parentheses
 Must be lvalue

» Value that can appear on LHS of assignment
 Tag "=r" indicates that symbolic value (%0, etc.), should be

replaced by register

asm(“Instruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 18 – 15-213, F’02

Closer Look at Extended ASM

Input ListInput List
 Series of expressions indicating sources for values %j+1, %j+2,

…
 Enclosed in parentheses
 Any expression returning value

 Tag "r" indicates that symbolic value (%0, etc.) will come from
register

asm(“Instruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 19 – 15-213, F’02

Closer Look at Extended ASM

Clobbers ListClobbers List
 List of register names that get altered by assembly instruction
 Compiler will make sure doesn’t store something in one of these

registers that must be preserved across asm
 Value set before & used after

asm(“Instruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 20 – 15-213, F’02

Accessing the Cycle Cntr. (cont.)

Emitted Assembly CodeEmitted Assembly Code

 Used %ecx for *hi (replacing %0)
 Used %ebx for *lo (replacing %1)
 Does not use %eax or %edx for value that must be carried

across inserted assembly code

movl 8(%ebp),%esi # hi
movl 12(%ebp),%edi # lo

#APP
rdtsc; movl %edx,%ecx; movl %eax,%ebx

#NO_APP
movl %ecx,(%esi) # Store high bits at *hi
movl %ebx,(%edi) # Store low bits at *lo

– 21 – 15-213, F’02

Completing Measurement

 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles
 Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

– 22 – 15-213, F’02

Timing With Cycle Counter
Determine Clock Rate of ProcessorDetermine Clock Rate of Processor

 Count number of cycles required for some fixed number of
seconds

Time Function PTime Function P
 First attempt: Simply count cycles for one execution of P

 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

– 23 – 15-213, F’02

Measurement Pitfalls
OverheadOverhead

 Calling get_counter() incurs small amount of overhead
 Want to measure long enough code sequence to

compensate

Unexpected Cache EffectsUnexpected Cache Effects
 artificial hits or misses
 e.g., these measurements were taken with the Alpha cycle

counter:
foo1(array1, array2, array3); /* 68,829 cycles */
foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */
foo1(array1, array2, array3); /* 23,203 cycles */

– 24 – 15-213, F’02

Dealing with Overhead & Cache
Effects

 Always execute function once to “warm up” cache
 Keep doubling number of times execute P() until reach some

threshold
 Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

– 25 – 15-213, F’02

Multitasking Effects
Cycle Counter Measures Elapsed TimeCycle Counter Measures Elapsed Time

 Keeps accumulating during periods of inactivity
 System activity
 Running other processes

Key ObservationKey Observation
 Cycle counter never underestimates program run time
 Possibly overestimates by large amount

K-Best Measurement SchemeK-Best Measurement Scheme
 Perform up to N (e.g., 20) measurements of function
 See if fastest K (e.g., 3) within some relative factor ε (e.g., 0.001)

K

– 26 – 15-213, F’02

K-Best
Validation

Very good accuracy for < 8msVery good accuracy for < 8ms
 Within one timer interval
 Even when heavily loaded

Less accurate of > 10msLess accurate of > 10ms
 Light load: ~4% error

 Interval clock interrupt
handling

 Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

K = 3, ε = 0.001

– 27 – 15-213, F’02

Compensate
For Timer
Overhead

Subtract Timer OverheadSubtract Timer Overhead
 Estimate overhead of single

interrupt by measuring periods
of inactivity

 Call interval timer to determine
number of interrupts that have
occurred

Better Accuracy for > 10msBetter Accuracy for > 10ms
 Light load: 0.2% error
 Heavy load: Still very high

error

K = 3, ε = 0.001

Intel Pentium III, Linux

Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

– 28 – 15-213, F’02

K-Best
on NT

Acceptable accuracy for < 50msAcceptable accuracy for < 50ms
 Scheduler allows process to

run multiple intervals

Less accurate of > 10msLess accurate of > 10ms
 Light load: 2% error
 Heavy load: Generally very

high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

– 29 – 15-213, F’02

Time of Day Clock
 Unix gettimeofday() function
 Return elapsed time since reference time (Jan 1, 1970)
 Implementation

 Uses interval counting on some machines
» Coarse grained

 Uses cycle counter on others
» Fine grained, but significant overhead and only 1

microsecond resolution
#include <sys/time.h>
#include <unistd.h>

 struct timeval tstart, tfinish;
 double tsecs;
 gettimeofday(&tstart, NULL);
 P();
 gettimeofday(&tfinish, NULL);
 tsecs = (tfinish.tv_sec - tstart.tv_sec) +
 1e6 * (tfinish.tv_usec - tstart.tv_usec);

– 30 – 15-213, F’02

K-Best Using gettimeofday

LinuxLinux
 As good as using cycle

counter
 For times > 10 microseconds

WindowsWindows
 Implemented by interval

counting
 Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Win-NT

Linux

Linux-comp

– 31 – 15-213, F’02

Measurement Summary
Timing is highly case and system dependentTiming is highly case and system dependent

 What is overall duration being measured?
 > 1 second: interval counting is OK
 << 1 second: must use cycle counters

 On what hardware / OS / OS version?
 Accessing counters

» How gettimeofday is implemented
 Timer interrupt overhead
 Scheduling policy

Devising a Measurement MethodDevising a Measurement Method
 Long durations: use Unix timing functions
 Short durations

 If possible, use gettimeofday
 Otherwise must work with cycle counters
 K-best scheme most successful

