15-213

“The course that gives CMU its Zip!”

Exceptional Control Flow
Part li
Oct. 22, 2002

Topics
m Process Hierarchy
m Shells
m Signals
m Nonlocal jumps

classl7.ppt

ECF Exists at All Levels of a System

\

Exceptions
m Hardware and operating system kernel

software Previous Lecture

Concurrent processes
m Hardware timer and kernel software

J \o

Signals

m Kernel software > This Lecture

Non-local jumps
m Application code /

o 15-213, F’02

The World of Multitasking

System Runs Many Processes Concurrently

m Process: executing program

e State consists of memory image + register values + program
counter

m Continually switches from one process to another

® Suspend process when it needs I/O resource or timer event
occurs

® Resume process when I/O available or given scheduling priority

m Appears to user(s) as if all processes executing
simultaneously
e Even though most systems can only execute one process at a
time
® Except possibly with lower performance than if running alone

3 15-213, F'02

Programmer’s Model of Multitasking

Basic Functions
m fork () spawns new process
e Called once, returns twice

m exit () terminates own process
e Called once, never returns
e Puts it into “zombie” status

m wait () and waitpid () wait for and reap terminated
children

m execl () and execve () run a new program in an existing
process
e Called once, (normally) never returns

Programming Challenge
m Understanding the nonstandard semantics of the functions
m Avoiding improper use of system resources
® E.g. “Fork bombs” can disable a system.

4 15-213, F’02

Unix Process Hierarchy

[0]

initE

Login shell

Child m
Carandetiid> (Grandehitd>

et
o
.
.

15-213, F’02

Unix Startup: Step 1

1. Pushing reset button loads the pPC with the address of a small

bootstrap program.
2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)
4. Boot block program passes control to kernel.
5. Kernel handcrafts the data structures for process 0.

[0] Process 0: handcrafted kernel process

>~ Process 0 forks child process 1

J

@ Child process 1 execs /sbin/init

_6— 15-213, F'02

=
=
.
3
-
*

Unix Startup: Step 2

Daemons

*
‘e

taa, e
.
» s
L]
LE T ann®
"Essmsmmmmunnt®

[0]

/etc/inittab —» initE

o)

init forks and execs

daemons per
/etc/inittab, and forks

and execs a getty program
for the console

15-213, F’02

Unix Startup: Step 3

[0]

The getty process
execs a login
program

15-213, F’02

Unix Startup: Step 4

[0]

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

15-213, F’02

Shell Programs

A shellis an application program that runs programs on
behalf of the user.

m sh — Original Unix Bourne Shell

m csh - BSD Unix C Shell, tesh - Enhanced C Shell
m bash -Bourne-Again Shell

int main ()

{
char cmdline[MAXLINE] ;

while (1) {
r/> ;lzizd(‘:/ . Execution is a sequence of
Fgets (cmdline, MAXLINE, stdin); read/ evaluate steps
if (feof(stdin))
exit (0);

/* evaluate */
eval (cmdline) ;

—10-} 15-213, F’02

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* argv for execve() */

int bg; /* should the job run in bg or fg? */
pid t pid; /* process id */

bg = parseline(cmdline, argv) ;
if ('builtin command (argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit(0) ;

}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
printf ("%d %s", pid, cmdline) ;

v cilv, 1 vao

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs.

But what about background jobs?
m Will become zombies when they terminate.

m Will never be reaped because shell (typically) will not
terminate.

m Creates a memory leak that will eventually crash the kernel
when it runs out of memory.

Solution: Reaping background jobs requires a
mechanism called a signal.

12— 15-213, F’02

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.

m Kernel abstraction for exceptions and interrupts.

m Sent from the kernel (sometimes at the request of another
process) to a process.

m Different signals are identified by small integer ID’s
m The only information in a signal is its ID and the fact that it

arrived.
ID Name Default Action Corresponding Event
2 | SIGINT | Terminate Interrupt from keyboard (ctl-c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14 | SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated

_ 13— 15-213, F'02

Signal Concepts

Sending a signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process.

m Kernel sends a signal for one of the following reasons:

® Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

® Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

14— 15-213, F’02

Signhal Concepts (cont)

Receiving a signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.

m Three possible ways to react:
® Ignore the signal (do nothing)
® Terminate the process.
® Caich the signal by executing a user-level function called a
signal handler.

» AKin to a hardware exception handler being called in
response to an asynchronous interrupt.

—15— 15-213, F’02

Signhal Concepts (cont)

A signal is pending if it has been sent but not yet
received.

m There can be at most one pending signal of any particular
type.
= Important: Signals are not queued

e If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.

m Blocked signals can be delivered, but will not be received until
the signal is unblocked.

A pending signal is received at most once.

_ 16— 15-213, F'02

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process.
m pending — represents the set of pending signals
® Kernel sets bit k in pending whenever a signal of type k is
delivered.
® Kernel clears bit k in pending whenever a signal of type k is
received
m blocked - represents the set of blocked signals

® Can be set and cleared by the application using the
sigprocmask function.

- 17 - 15-213, F’02

Process Groups

Every process belongs to exactly
one process group

pid=10
pgid=10

E pid=20 E

| pgid=20 i

\ ! Background Background

| @ @ i process group 32 process group 40

| | getpgrp () — Return process

! pid=21 pid=22 |

| pgid=20 pgid=20 | group of current process
""""" i oreground setpgid() - Change process

process group 20 group of a process

_ 18— 15-213, F'02

Sending Signals with kill Program

kill program sends

arbitrary signal to a linux> ./forks 16
process or process linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
group
linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
Examples 24818 pts/2 00:00:02 forks
mkill -9 24818 24819 pts/2 00:00:02 forks

linux> kill -9 -24817
linux> ps
mkill -9 -24817 PID TTY TIME CMD

® Send SIGKILL to 24788 pts/2 00:00:00 tcsh
. 24823 pts/2 00:00:00 ps
every process in

linux>
process group
24817.

process 24818

_ 19— 15-213, F'02

Sending Signals from the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGTERM (SIGTSTP) to every job in
the foreground process group.

—20-—

m SIGTERM - default action is to terminate each process
m SIGTSTP - default action is to stop (suspend) each process

pid=21 pid=22
pgid=20 pgid=20

| . Background Background
| . process process
i i group 32 group 40

Foreground
process group 20

15-213, F’02

Example of ctrl-c and ctrl-z

21—

linux> ./forks

Child: pid=24868 pgrp=24867

17

Parent: pid=24867 pgrp=24867

<typed ctrl-z>
Suspended
linux> ps a
PID TTY
24788 pts/2
24867 pts/2
24868 pts/2
24869 pts/2
bass> fqg
./forks 17
<typed ctrl-c>
linux> ps a
PID TTY
24788 pts/2
24870 pts/2

STAT

by I I I 7))

STAT
S

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-usr/local/bin/tcsh -i
./forks 17

./forks 17

ps a

COMMAND
-usr/local/bin/tecsh -i
ps a

15-213, F’02

Sending Signals with kill Function

void forkl2 ()
{
pid t pid[N];
int i, child status;
for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
while(1l); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; 1 < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

T, 15-213, F’02

Receiving Signals

Suppose kernel is returning from exception handler
and is ready to pass control to process p.

Kernel computes pnb = pending & ~blocked
m The set of pending nonblocked signals for process p

If (pnb == 0)
m Pass control to next instruction in the logical flow for p.

Else

m Choose least nonzero bit kin pnb and force process p to
receive signal k.

m The receipt of the signal triggers some action by p
m Repeat for all nonzero kin pnb.

m Pass control to next instruction in logical flow for p.

—23— 15-213, F’02

Default Actions

Each signal type has a predefined default action, which
IS one of:

m The process terminates

m The process terminates and dumps core.

m The process stops until restarted by a SIGCONT signal.
m The process ignores the signal.

—_ 24 — 15-213, F’02

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum:

® handler t *signal (int signum, handler t *handler)

Different values for handler:
m SIG_IGN: ignore signals of type signum

m SIG_DFL.: revert to the default action on receipt of signals of
type signum.

m Otherwise, handler is the address of a signal handler
e Called when process receives signal of type signum
® Referred to as “installing” the handler.
e Executing handler is called “cafching” or “handling” the signal.

® When the handler executes its return statement, control passes
back to instruction in the control flow of the process that was
interrupted by receipt of the signal.

_ o5 _ 15-213, F'02

Signal Handling Example

void int handler (int sig)

{

printf ("Process %d received signal %d\n",
getpid(), sig);

exit (0);
}
linux> ./forks 13
void forkl3() Killing process 24973
{ Killing process 24974
pid_t pid[N]; Killing process 24975
int i, child status; Killing process 24976
signal (SIGINT, int handler); Killing process 24977

Process 24977 received signal 2
Child 24977 terminated with exit status 0
} Process 24976 received signal 2

Child 24976 terminated with exit status 0
Process 24975 received signal 2

Child 24975 terminated with exit status 0
Process 24974 received signal 2

Child 24974 terminated with exit status 0
Process 24973 received signal 2

Child 24973 terminated with exit status 0
linux>

— 26 — 15-213, F’02

Signal Handler Funkiness

Pending signals are not

int ccount = 0; queUEd

\{roid child handler (int sig) - FOI' eaCh Signal type,
int child status; just have single bit
Ei:a’itlfff = wait(&child status); indicating whether or
printf ("Received signal %d from process %d\n", not Signal is pending

} sig, pid); = Even if multiple

processes have sent
void forkl4 () thlS Signal
{
pid t pid[N];
int i, child status;
ccount = N;

signal (SIGCHLD, child handler) ;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit (0) ;

}

while (ccount > 0)
pause () ;/* Suspend until signal occurs */

e 15-213, F’02

Living With Nonqueuing Signals

Must check for all terminated jobs
m Typically loop with wait

void child handler2 (int sigq)
{
int child status;
pid t pid;
while ((pid = wait(&child status)) > 0) {
ccount--;
printf ("Received signal %d from process %d\n", sigqg,
pid);
}
}

void forkl5()
{

signal (SIGCHLD, child handler2);

— 28 — 15-213, F’02

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
printf ("You think hitting ctrl-c will stop the bomb?\n");
sleep(2) ;
printf ("Well...");
fflush (stdout) ;
sleep (1) ;
printf ("OK\n") ;
exit (0) ;
}

main() {
signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {
}

}

— 29— 15-213, F’02

A Program That Reacts to Internally

Generated Events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler (int sig) ({
printf ("BEEP\n") ;
fflush (stdout) ;

if (++beeps < 5)
alarm(1l) ;

else {
printf ("BOOM!\n") ;
exit (0) ;

}

—30-—

main() {
signal (SIGALRM, handler) ;
alarm(l); /* send SIGALRM in
1 second */

while (1) {
/* handler returns here */

}
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

15-213, F’02

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for transferring
control to an arbitrary location.

m Controlled to way to break the procedure call/return discipline
m Useful for error recovery and signal handling

int setjmp (jmp buf j)
m Must be called before longjmp
m |dentifies a return site for a subsequent longjmp.
m Called once, returns one or more times

Implementation:

m Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf.

m Return 0

3q 15-213, F'02

setjmp/longjmp (cont)

void longjmp (jmp buf j, int 1)

m Meaning:
® return from the setjmp remembered by jump buffer j again...
® ...this time returning i instead of 0

m Called after setjmp
m Called once, but never returns

longjmp Implementation:
m Restore register context from jump buffer j
m Set 3eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j.

- 32 — 15-213, F’02

setjmp/longjmp Example

#include <setjmp.h>
jmp buf buf;

main () {
if (setjmp(buf) !'= 0) {

else
printf ("first time through\n");
pl(); /* pl calls p2, which calls p3 */
}
p3()
<error checking code>
if (error)
longjmp (buf, 1)

printf ("back in main due to an error\n");

— 33 —

15-213, F’02

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp buf buf;
void handler (int sig) ({

siglongjmp (buf, 1);
}

main () {

signal (SIGINT, handler);

if (!'sigsetjmp(buf, 1))
printf ("starting\n");
else

printf ("restarting\n") ;

while (1) {

sleep (1) ;
printf ("processing...\n");

}
}

—34 -

bass> a.out

starting

processing. ..
processing. ..

restarting

processing. ..
processing. ..
processing. ..

restarting

processing. ..

restarting

processing. ..
processing. ..

<4+—Ctrl-c

<4+—Ctrl-c

<4+—Ctrl-c

15-213, F’02

Limitations of Nonlocal Jumps

Works within stack discipline

— 35 —

m Can only long jump to environment of function that has been

called but not yet completed

jmp buf env;

P1 ()
{
if (setjmp(env)) ({
/* Long Jump to here */
} else {
P2();
}
}

P2 ()

{ . . . P2(); . . P3(); }

P3()

{
longjmp (env, 1) ;

}

IIIHH!III

After longjmp

Before longjmp

15-213, F’02

Limitations of Long Jumps (cont.)

Works within stack discipline

m Can only long jump to environment of function that has been
called but not yet completed

— 36 —

jmp buf env;

P1()

{
P2(); P3();

}

P2 ()
{
if (setjmp(env)) {
/* Long Jump to here */
}
}

P3()

{
longjmp (env, 1) ;

}

At setjmp

At longjmp
15-213, F02

Summary

Signals provide process-level exception handling
m Can generate from user programs
m Can define effect by declaring signal handler

Some caveats

m Very high overhead
® >10,000 clock cycles
e Only use for exceptional conditions

m Don’t have queues
e Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within
process
m Within constraints of stack discipline

37 15-213, F'02

