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Instruction Set Architecture

Application

Instruction Set Architecture

Implementation

…SPARC   MIPS ARM   x86   HPPA   IA64…

Intel Pentium X
AMD K6, Athlon, Opteron
Transmeta Crusoe TM5x00
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Instruction Set Architecture

• Strong influence on cost/performance

• New ISAs are rare, but versions are 
not
– 16-bit, 32-bit and 64-bit X86 versions

• Longevity is a strong function of 
marketing prowess
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• Strongly constrained by the number of 
bits available to instruction encoding

• Opcodes/operands
• Registers/memory
• Addressing modes
• Orthogonality
• 0, 1, 2, 3 address machines
• Instruction formats
• Decoding uniformity

Traditional Issues



 Appendix A - Pipelining 5

Introduction
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement? 

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations 
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What Is Pipelining

• Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D
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What Is Pipelining

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would  laundry take? 
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What Is Pipelining 
Start work ASAP

• Pipelined laundry takes 
3.5 hours for 4 loads 
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Pipelining 
Lessons

• Pipelining doesn’t help 
latency of single task, it helps 
throughput of entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = Number 
pipe stages

• Unbalanced lengths of pipe 
stages reduces speedup

• Time to “fill” pipeline and time 
to “drain” it reduces speedup
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What Is 
Pipelining
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MIPS Without 
Pipelining

What Is 
Pipelining

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the instruction 
register (IR); increment the PC by 4 to address the next sequential 
instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary 
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage 
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s a load 
or a Branch).
If an ALU, actually do the operation.  If an address calculation, figure out 
how  to obtain the address and stash away the location of that address for 
the next cycle.
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this  is an ALU, do nothing.
If a load or store, then access  memory.
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.



 Appendix A - Pipelining 16

The Basic Pipeline For MIPS

Latches between 
each stage provide 
pipelining.
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The Basic Pipeline For MIPS
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Pipeline Hurdles
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations

Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this 
combination of instructions (single person to fold 
and put clothes away)

– Data hazards: Instruction depends on result of 
prior instruction still in the pipeline (missing 
sock)

– Control hazards: Pipelining of branches & other 
instructions  that change the PC 

– Common solution is to stall the pipeline until the 
hazard  is resolved, inserting one or more 
“bubbles” in the pipeline
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Pipeline Hurdles
Definition
• conditions that lead to incorrect behavior if not fixed 
• Structural hazard 

– two different instructions use same h/w in same cycle 
• Data hazard 

– two different instructions use same storage 
– must appear as if the instructions execute in correct order 

• Control hazard 
– one instruction affects which instruction is next 

Resolution 
• Pipeline interlock logic detects hazards and fixes them 
• simple solution: stall - 
• increases CPI, decreases performance 
• better solution: partial stall -
• some instruction stall, others proceed better to stall early than late 
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Structural Hazards
When two or 
more different 
instructions want 
to use same 
hardware 
resource in same 
cycle 

e.g., MEM  uses 
the same memory 
port as IF as 
shown in this 
slide.
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Structural Hazards

This is another 
way of looking 
at the effect of 
a stall.I
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Structural Hazards

This is another way to represent the stall we saw on 
the last few pages.
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Structural Hazards

Dealing with Structural Hazards 

Stall 
• low cost, simple 
• Increases CPI  
• use for rare case since stalling has performance effect

Pipeline hardware resource 
• useful for multi-cycle resources 

• good performance 
• sometimes complex e.g., RAM 

Replicate resource 
• good performance 
• increases cost (+ maybe interconnect delay) 

• useful for cheap or divisible resources 
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Structural Hazards
Structural hazards are reduced with these rules:
• Each instruction uses a resource at most once 
• Always use the resource in the same pipeline stage 

• Use the resource for one cycle only

Many RISC ISA’a designed with this in mind 

Sometimes very complex to do this.  For example, memory of 
necessity is used in the IF and MEM stages. 

Some common Structural Hazards:
• Memory - we’ve already mentioned this one.
• Floating point - Since many floating point instructions require 

many cycles, it’s easy for them to interfere with each other. 
• Starting up more of one type of instruction than there are 

resources.  For instance, the PA-8600 can support two ALU + 
two load/store instructions per cycle - that’s how much hardware 
it has available.
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Structural Hazards

We want to compare the performance of two machines.  Which machine is faster?
• Machine A: Dual ported memory - so there are no memory stalls
• Machine B: Single ported memory, but its pipelined implementation has a 1.05 

times faster clock rate
Assume:
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

            SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

               = Pipeline Depth
      SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 

    x (clockunpipe/(clockunpipe / 1.05)

         = (Pipeline Depth/1.4) x  1.05
         = 0.75 x Pipeline Depth
              SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 

This is the example on Page 144.
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Data Hazards

These occur when at any time, there are 
instructions active that need to access the 
same data (memory or register) locations.

Where there’s real trouble is when we have:

instruction A
instruction B

and B manipulates (reads or writes) data 
before A does.  This violates the order of the 
instructions, since the architecture implies 
that A completes entirely before B is 
executed.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Data Hazards
Read After Write (RAW) 

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature).  
This hazard results from an actual need for 
communication.

Execution Order is:
InstrI

InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3
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Data Hazards
Write After Read (WAR) 

InstrJ tries to write operand before InstrI reads i
– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Reads are always in stage 2, and 
–  Writes are always in stage 5

Execution Order is:
InstrI

InstrJ

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Data Hazards
Write After Write (WAW) 

InstrJ tries to write operand before InstrI writes it
–  Leaves wrong result ( InstrI not InstrJ )

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Writes are always in stage 5

• Will see WAR and WAW  in later more complicated pipes

Execution Order is:
InstrI

InstrJ

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Data Hazards

Simple Solution to RAW 

• Hardware detects RAW and stalls 
• Assumes register written then read each cycle 

+ low cost to implement, simple 
-- reduces IPC 

• Try to minimize stalls 

Minimizing RAW stalls 

• Bypass/forward/short-circuit  (We will use the word “forward”)
• Use data before it is in the register 

+ reduces/avoids stalls 
-- complex 

• Crucial for common RAW hazards 
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Data Hazards

The use of the result of the ADD instruction in the next three instructions causes a 
hazard, since the register is not written until after those instructions read it.
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Figure 3.9
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Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data 
available to the input of the ALU for 
subsequent instructions, even though the 
generating instruction hasn’t gotten to WB 
in order to write the memory or registers.

Figure 3.10
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after 
the MEM stage.

Time (clock cycles)
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown 
here.

Figure 3.13
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Data Hazards
This is another 
representation 

of the stall.

LW     R1, 0(R2) IF ID EX MEM WB

SUB   R4, R1, R5 IF ID EX MEM WB

AND   R6, R1, R7 IF ID EX MEM WB

OR     R8, R1, R9 IF ID EX MEM WB

LW     R1, 0(R2) IF ID EX MEM WB  

SUB   R4, R1, R5 IF ID stall EX MEM WB

AND   R6, R1, R7 IF stall ID EX MEM WB

OR     R8, R1, R9 stall IF ID EX MEM WB
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Data Hazards
Instruction scheduled by compiler - move instruction in order to reduce stall.
 

lw Rb, b                    -- code sequence for a = b+c before scheduling 
lw Rc, c 
Add Ra, Rb, Rc         -- stall 
sw a, Ra 
lw Re, e                      -- code sequence for d = e+f before scheduling 
lw Rf, f 
sub Rd, Re, Rf           -- stall 
sw d, Rd 

Arrangement of code after scheduling.
 

lw Rb, b 
lw Rc, c 
lw Re, e 
Add Ra, Rb, Rc
lw Rf, f 
sw a, Ra 
sub Rd, Re, Rf
sw d, Rd

Pipeline Scheduling
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Data Hazards Pipeline Scheduling

% loads stalling pipeline
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Control Hazards

A control hazard is when we 
need to find the destination 
of a branch, and can’t fetch 
any new instructions until 
we know that destination.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Control Hazard on 
Branches

Three Stage Stall

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11
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Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
(Whoa!  How did we get that 1.9???)

• Two part solution to this dramatic increase:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ^ 0

• MIPS Solution:
– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage

• must be fast 
• can't afford to subtract 
• compares with 0 are simple 
• Greater-than, Less-than test sign-bit,  but not-equal must OR all bits 
• more general compares need ALU 

– 1 clock cycle penalty for branch versus 3

In the next chapter, we’ll look at ways to avoid the branch all together.

Control Hazards
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Five Branch Hazard 
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome

Control Hazards
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#4: Execute Both Paths

#5: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

– MIPS uses this

Branch delay of length n

Control Hazards Five Branch Hazard 
Alternatives
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Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in 

computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple instructions 
issued per clock (superscalar)

Control Hazards
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Evaluating Branch 
Alternatives

Scheduling Branch CPI       speedup v.         Speedup v.
 scheme     penalty        unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%,                   65% change PC

Control Hazards

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Pipelining Introduction 
Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up Š Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

Control Hazards
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Compiler “Static” 
Prediction of

Taken/Untaken Branches
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Control Hazards
The compiler can program what it thinks 
the branch direction will be.  Here are 
the results when it does so.
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Compiler “Static” 
Prediction of

Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot

• Two strategies
– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch 

based on prior run

Control Hazards
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Evaluating Static 
Branch Prediction 

Strategies

• Misprediction ignores 
frequency of branch

• “Instructions between 
mispredicted branches” 
is a better metric
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What Makes Pipelining Hard?
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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What Makes 
Pipelining Hard?

Examples of interrupts:
• Power failing, 
• Arithmetic overflow, 
• I/O device request, 
• OS call, 
• Page fault 

Interrupts (also known as: faults, 
exceptions, traps) often require 

• surprise jump (to vectored address) 
• linking return address 
• saving of PSW (including CCs) 

• state change (e.g., to kernel mode) 

Interrupts cause 
great havoc!

There are 5 instructions executing 
in 5 stage pipeline when an 
interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?
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What Makes 
Pipelining Hard?

Interrupts cause 
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential 
solution #1: save multiple PCs 
• Save current and next PC 
• Special return sequence, more complex hardware 
solution #2: single PC plus 
• Branch delay bit 
• PC points to branch instruction 

Stage Problem that causes the interrupt

IF Page fault on instruction fetch; misaligned memory 
access; memory-protection violation

ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation
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What Makes 
Pipelining Hard?

• Simultaneous exceptions in more than one pipeline stage, e.g.,
– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage
– Add fault will happen BEFORE load fault

• Solution #1
– Interrupt status vector per instruction
– Defer check until last stage, kill state update if exception

• Solution #2
– Interrupt ASAP
– Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause 
great havoc!
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What Makes 
Pipelining Hard?

Here’s what happens on a data page fault. 

        1   2   3   4   5   6   7   8   9 

i       F   D   X   M   W 

i+1         F   D   X   M   W < page fault 

i+2             F   D   X   M   W < squash 

i+3                 F   D   X   M    W < squash 

i+4                     F   D   X    M   W < squash 

i+5     trap >             F   D    X   M   W 

i+6     trap handler >         F    D   X   M   W 

Interrupts cause 
great havoc!



 Appendix A - Pipelining 54

What Makes 
Pipelining Hard?

Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register change 

during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes are no longer the 

last stage.

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

Complex 
Instructions
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Handling Multi-cycle Operations

Multi-cycle instructions also 
lead to pipeline complexity.

A very lengthy instruction 
causes everything else in 
the pipeline to wait for it.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Multi-Cycle 
Operations

Floating point gives  long execution time.

This causes a stall of the pipeline.

It’s possible to pipeline the FP execution unit so it can initiate new instructions 
without waiting full latency.  Can also have multiple FP units.

FP Instruction Latency     Initiation Rate 

Add, Subtract 4 3

Multiply 8 4

Divide 36 35

Square root 112 111

Negate 2 1

Absolute value 2 1

FP compare 3 2

Floating Point
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Divide, Square Root take -10X to -30X longer than Add

– Interrupts?
– Adds WAR and WAW hazards since pipelines are 

no longer same length

Multi-Cycle 
Operations

Floating Point

1 2 3 4 5 6 7 8 9 10 11
i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2:  no WAW, but this complicates an interrupt
I + 4:  no WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue
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Summary of Pipelining Basics
• Hazards limit performance

– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; pipelining 
helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Branch delay slots
– Branch prediction
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Credits
I have not written these notes by myself.  There’s a great deal of fancy 

artwork here that takes considerable time to prepare.

I have borrowed from:

Wen-mei & Patel: http://courses.ece.uiuc.edu/ece511/lectures/lecture3.ppt

Patterson:  http://www.cs.berkeley.edu/~pattrsn/252S98/index.html

Rabaey:  (He used lots of Patterson material):

http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm

Katz:  (Again, he borrowed heavily from Patterson):

http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html

Mark Hill:  (Follows text fairly well): http://www.cs.wisc.edu/~markhill/cs752/

http://www.cs.berkeley.edu/~pattrsn/252S98/index.html
http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm
http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html
http://www.cs.wisc.edu/~markhill/cs752/
http://www.cs.berkeley.edu/~pattrsn/252S98/index.html
http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm
http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html
http://www.cs.wisc.edu/~markhill/cs752/
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Summary
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement? 

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations 
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The Big Picture
Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance 
Focus 

BOXBOX Si fin - Body!

DrainSource

Gate

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

f2() {
   f3(s2, &j, &i);
   *s2->p = 10;
   i = *s2->q + i;
}

i1: ld r1, b         <p1>
i2: ld r2, c         <p1>
i3: ld r5, z         <p3>
i4: mul r6, r5, 3    <p3>
i5: add r3, r1, r2   <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

The big picture. Talk about the levels of abstraction. Talk about the fact that 
this is where all programs get ushered into hardware execution. 

Circuits are increasing providing both opportunities (resources, bandwidth) and 
challenges (noise, power). 

Circuits are locally designed; software is globally intertwined 

Software is increasingly over designed for portability and productivity. 

The path between the two domains is increasingly stressed and inadequate due 
to this mismatch.

The focus of the thrust is to provide a very strong path from the productivity 
oriented software domain into the performance oriented hardware domain. 

Translate device/circuit level innovations into visible benefit at the 
application/software level!
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Instruction Set Architecture

Application

Instruction Set Architecture

Implementation

…SPARC   MIPS ARM   x86   HPPA   IA64…

Intel Pentium X
AMD K6, Athlon, Opteron
Transmeta Crusoe TM5x00
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Instruction Set Architecture

• Strong influence on cost/performance

• New ISAs are rare, but versions are 
not
– 16-bit, 32-bit and 64-bit X86 versions

• Longevity is a strong function of 
marketing prowess
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• Strongly constrained by the number of 
bits available to instruction encoding

• Opcodes/operands
• Registers/memory
• Addressing modes
• Orthogonality
• 0, 1, 2, 3 address machines
• Instruction formats
• Decoding uniformity

Traditional Issues
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Introduction
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement? 

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations 



6 

  

 Appendix A - Pipelining 6

What Is Pipelining

• Laundry Example
• Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D
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What Is Pipelining

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would  laundry take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time
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What Is Pipelining 
Start work ASAP

• Pipelined laundry takes 
3.5 hours for 4 loads 

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Pipelining 
Lessons

• Pipelining doesn’t help 
latency of single task, it helps 
throughput of entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = Number 
pipe stages

• Unbalanced lengths of pipe 
stages reduces speedup

• Time to “fill” pipeline and time 
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

What Is 
Pipelining
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MIPS Without 
Pipelining

What Is 
Pipelining

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D



11 

  

 Appendix A - Pipelining 11

MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the instruction 
register (IR); increment the PC by 4 to address the next sequential 
instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary 
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage 
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s a load 
or a Branch).
If an ALU, actually do the operation.  If an address calculation, figure out 
how  to obtain the address and stash away the location of that address for 
the next cycle.
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this  is an ALU, do nothing.
If a load or store, then access  memory.
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MIPS Functions
What Is 

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. 
Calc

IR L
M
D

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.
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The Basic Pipeline For MIPS

Latches between 
each stage provide 
pipelining.
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The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Figure 3.3
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Pipeline Hurdles
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations

Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this 
combination of instructions (single person to fold 
and put clothes away)

– Data hazards: Instruction depends on result of 
prior instruction still in the pipeline (missing 
sock)

– Control hazards: Pipelining of branches & other 
instructions  that change the PC 

– Common solution is to stall the pipeline until the 
hazard  is resolved, inserting one or more 
“bubbles” in the pipeline
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Pipeline Hurdles
Definition
• conditions that lead to incorrect behavior if not fixed 
• Structural hazard 

– two different instructions use same h/w in same cycle 
• Data hazard 

– two different instructions use same storage 
– must appear as if the instructions execute in correct order 

• Control hazard 

– one instruction affects which instruction is next 

Resolution 
• Pipeline interlock logic detects hazards and fixes them 
• simple solution: stall - 
• increases CPI, decreases performance 
• better solution: partial stall -
• some instruction stall, others proceed better to stall early than late 
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Structural Hazards
When two or 
more different 
instructions want 
to use same 
hardware 
resource in same 
cycle 

e.g., MEM  uses 
the same memory 
port as IF as 
shown in this 
slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Figure 3.6
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Structural Hazards

This is another 
way of looking 
at the effect of 
a stall.I

n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7
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Structural Hazards

This is another way to represent the stall we saw on 
the last few pages.
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Structural Hazards

Dealing with Structural Hazards 

Stall 

• low cost, simple 
• Increases CPI  

• use for rare case since stalling has performance effect

Pipeline hardware resource 

• useful for multi-cycle resources 

• good performance 
• sometimes complex e.g., RAM 

Replicate resource 
• good performance 

• increases cost (+ maybe interconnect delay) 

• useful for cheap or divisible resources 
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Structural Hazards
Structural hazards are reduced with these rules:

• Each instruction uses a resource at most once 

• Always use the resource in the same pipeline stage 
• Use the resource for one cycle only

Many RISC ISA’a designed with this in mind 

Sometimes very complex to do this.  For example, memory of 
necessity is used in the IF and MEM stages. 

Some common Structural Hazards:

• Memory - we’ve already mentioned this one.
• Floating point - Since many floating point instructions require 

many cycles, it’s easy for them to interfere with each other. 

• Starting up more of one type of instruction than there are 
resources.  For instance, the PA-8600 can support two ALU + 
two load/store instructions per cycle - that’s how much hardware 
it has available.
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Structural Hazards

We want to compare the performance of two machines.  Which machine is faster?
• Machine A: Dual ported memory - so there are no memory stalls
• Machine B: Single ported memory, but its pipelined implementation has a 1.05 

times faster clock rate
Assume:
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

            SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

               = Pipeline Depth
      SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 

    x (clockunpipe/(clockunpipe / 1.05)

         = (Pipeline Depth/1.4) x  1.05
         = 0.75 x Pipeline Depth
              SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 

This is the example on Page 144.
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Data Hazards

These occur when at any time, there are 
instructions active that need to access the 
same data (memory or register) locations.

Where there’s real trouble is when we have:

instruction A
instruction B

and B manipulates (reads or writes) data 
before A does.  This violates the order of the 
instructions, since the architecture implies 
that A completes entirely before B is 
executed.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Data Hazards
Read After Write (RAW) 

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature).  
This hazard results from an actual need for 
communication.

Execution Order is:
InstrI

InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3
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Data Hazards
Write After Read (WAR) 

InstrJ tries to write operand before InstrI reads i
– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Reads are always in stage 2, and 
–  Writes are always in stage 5

Execution Order is:
InstrI

InstrJ

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Data Hazards
Write After Write (WAW) 

InstrJ tries to write operand before InstrI writes it
–  Leaves wrong result ( InstrI not InstrJ )

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Writes are always in stage 5

• Will see WAR and WAW  in later more complicated pipes

Execution Order is:
InstrI

InstrJ

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Data Hazards

Simple Solution to RAW 

• Hardware detects RAW and stalls 
• Assumes register written then read each cycle 

+ low cost to implement, simple 
-- reduces IPC 

• Try to minimize stalls 

Minimizing RAW stalls 

• Bypass/forward/short-circuit  (We will use the word “forward”)
• Use data before it is in the register 

+ reduces/avoids stalls 
-- complex 

• Crucial for common RAW hazards 
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Data Hazards

The use of the result of the ADD instruction in the next three instructions causes a 
hazard, since the register is not written until after those instructions read it.

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9
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Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data 
available to the input of the ALU for 
subsequent instructions, even though the 
generating instruction hasn’t gotten to WB 
in order to write the memory or registers.

Figure 3.10

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after 
the MEM stage.

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Figure 3.12
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown 
here.

Figure 3.13

Time (clock cycles)

or   r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg
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Data Hazards
This is another 
representation 

of the stall.

LW     R1, 0(R2) IF ID EX MEM WB

SUB   R4, R1, R5 IF ID EX MEM WB

AND   R6, R1, R7 IF ID EX MEM WB

OR     R8, R1, R9 IF ID EX MEM WB

LW     R1, 0(R2) IF ID EX MEM WB  

SUB   R4, R1, R5 IF ID stall EX MEM WB

AND   R6, R1, R7 IF stall ID EX MEM WB

OR     R8, R1, R9 stall IF ID EX MEM WB
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Data Hazards
Instruction scheduled by compiler - move instruction in order to reduce stall.
 

lw Rb, b                    -- code sequence for a = b+c before scheduling 
lw Rc, c 
Add Ra, Rb, Rc         -- stall 
sw a, Ra 
lw Re, e                      -- code sequence for d = e+f before scheduling 
lw Rf, f 
sub Rd, Re, Rf           -- stall 
sw d, Rd 

Arrangement of code after scheduling.
 

lw Rb, b 
lw Rc, c 
lw Re, e 
Add Ra, Rb, Rc
lw Rf, f 
sw a, Ra 
sub Rd, Re, Rf
sw d, Rd

Pipeline Scheduling



37 

  

 Appendix A - Pipelining 37

Data Hazards Pipeline Scheduling

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled
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Control Hazards

A control hazard is when we 
need to find the destination 
of a branch, and can’t fetch 
any new instructions until 
we know that destination.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

  --   Structural Hazards

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Control Hazard on 
Branches

Three Stage Stall

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg
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Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
(Whoa!  How did we get that 1.9???)

• Two part solution to this dramatic increase:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ^ 0

• MIPS Solution:
– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage

• must be fast 
• can't afford to subtract 
• compares with 0 are simple 
• Greater-than, Less-than test sign-bit,  but not-equal must OR all bits 
• more general compares need ALU 

– 1 clock cycle penalty for branch versus 3

In the next chapter, we’ll look at ways to avoid the branch all together.

Control Hazards
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Five Branch Hazard 
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome

Control Hazards
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#4: Execute Both Paths

#5: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

– MIPS uses this

Branch delay of length n

Control Hazards Five Branch Hazard 
Alternatives
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Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in 

computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple instructions 
issued per clock (superscalar)

Control Hazards
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Evaluating Branch 
Alternatives

Scheduling Branch CPI       speedup v.         Speedup v.
 scheme     penalty        unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%,                   65% change PC

Control Hazards

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Pipelining Introduction 
Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up Š Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

Control Hazards
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Compiler “Static” 
Prediction of

Taken/Untaken Branches
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Control Hazards
The compiler can program what it thinks 
the branch direction will be.  Here are 
the results when it does so.
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Compiler “Static” 
Prediction of

Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot

• Two strategies
– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch 

based on prior run

Control Hazards
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Evaluating Static 
Branch Prediction 

Strategies

• Misprediction ignores 
frequency of branch

• “Instructions between 
mispredicted branches” 
is a better metric
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Control Hazards
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What Makes Pipelining Hard?
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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What Makes 
Pipelining Hard?

Examples of interrupts:
• Power failing, 

• Arithmetic overflow, 
• I/O device request, 
• OS call, 
• Page fault 

Interrupts (also known as: faults, 
exceptions, traps) often require 

• surprise jump (to vectored address) 
• linking return address 
• saving of PSW (including CCs) 

• state change (e.g., to kernel mode) 

Interrupts cause 
great havoc!

There are 5 instructions executing 
in 5 stage pipeline when an 
interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?
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What Makes 
Pipelining Hard?

Interrupts cause 
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential 
solution #1: save multiple PCs 
• Save current and next PC 
• Special return sequence, more complex hardware 
solution #2: single PC plus 
• Branch delay bit 
• PC points to branch instruction 

Stage Problem that causes the interrupt

IF Page fault on instruction fetch; misaligned memory 
access; memory-protection violation

ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation
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What Makes 
Pipelining Hard?

• Simultaneous exceptions in more than one pipeline stage, e.g.,

– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage

– Add fault will happen BEFORE load fault
• Solution #1

– Interrupt status vector per instruction
– Defer check until last stage, kill state update if exception

• Solution #2
– Interrupt ASAP

– Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause 
great havoc!
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What Makes 
Pipelining Hard?

Here’s what happens on a data page fault. 

        1   2   3   4   5   6   7   8   9 

i       F   D   X   M   W 

i+1         F   D   X   M   W < page fault 

i+2             F   D   X   M   W < squash 

i+3                 F   D   X   M    W < squash 

i+4                     F   D   X    M   W < squash 

i+5     trap >             F   D    X   M   W 

i+6     trap handler >         F    D   X   M   W 

Interrupts cause 
great havoc!
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What Makes 
Pipelining Hard?

Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register change 

during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes are no longer the 

last stage.

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

Complex 
Instructions
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Handling Multi-cycle Operations

Multi-cycle instructions also 
lead to pipeline complexity.

A very lengthy instruction 
causes everything else in 
the pipeline to wait for it.

A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-
Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to 
Implement? 

A.5 Extending the MIPS Pipeline to 
Handle Multi-cycle Operations
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Multi-Cycle 
Operations

Floating point gives  long execution time.

This causes a stall of the pipeline.

It’s possible to pipeline the FP execution unit so it can initiate new instructions 
without waiting full latency.  Can also have multiple FP units.

FP Instruction Latency     Initiation Rate 

Add, Subtract 4 3

Multiply 8 4

Divide 36 35

Square root 112 111

Negate 2 1

Absolute value 2 1

FP compare 3 2

Floating Point
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Divide, Square Root take -10X to -30X longer than Add

– Interrupts?
– Adds WAR and WAW hazards since pipelines are 

no longer same length

Multi-Cycle 
Operations

Floating Point

1 2 3 4 5 6 7 8 9 10 11
i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2:  no WAW, but this complicates an interrupt
I + 4:  no WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue
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Summary of Pipelining Basics
• Hazards limit performance

– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; pipelining 
helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Branch delay slots
– Branch prediction
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Credits
I have not written these notes by myself.  There’s a great deal of fancy 

artwork here that takes considerable time to prepare.

I have borrowed from:

Wen-mei & Patel: http://courses.ece.uiuc.edu/ece511/lectures/lecture3.ppt

Patterson:  http://www.cs.berkeley.edu/~pattrsn/252S98/index.html

Rabaey:  (He used lots of Patterson material):

http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm

Katz:  (Again, he borrowed heavily from Patterson):

http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html

Mark Hill:  (Follows text fairly well): http://www.cs.wisc.edu/~markhill/cs752/
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Summary
A.1 What is Pipelining? 

A.2 The Major Hurdle of Pipelining-Structural Hazards 

– Data Hazards 

– Control Hazards 

A.3  How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement? 

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations 
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