
 Appendix A - Pipelining 1

The Big Picture
Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance
Focus

BOXBOX Si fin - Body!

DrainSource

Gate

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

f2() {
 f3(s2, &j, &i);
 *s2->p = 10;
 i = *s2->q + i;
}

i1: ld r1, b <p1>
i2: ld r2, c <p1>
i3: ld r5, z <p3>
i4: mul r6, r5, 3 <p3>
i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

 Appendix A - Pipelining 2

Instruction Set Architecture

Application

Instruction Set Architecture

Implementation

…SPARC MIPS ARM x86 HPPA IA64…

Intel Pentium X
AMD K6, Athlon, Opteron
Transmeta Crusoe TM5x00

 Appendix A - Pipelining 3

Instruction Set Architecture

• Strong influence on cost/performance

• New ISAs are rare, but versions are
not
– 16-bit, 32-bit and 64-bit X86 versions

• Longevity is a strong function of
marketing prowess

 Appendix A - Pipelining 4

• Strongly constrained by the number of
bits available to instruction encoding

• Opcodes/operands
• Registers/memory
• Addressing modes
• Orthogonality
• 0, 1, 2, 3 address machines
• Instruction formats
• Decoding uniformity

Traditional Issues

 Appendix A - Pipelining 5

Introduction
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

 Appendix A - Pipelining 6

What Is Pipelining

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

 Appendix A - Pipelining 7

What Is Pipelining

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

 Appendix A - Pipelining 8

What Is Pipelining
Start work ASAP

• Pipelined laundry takes
3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

 Appendix A - Pipelining 9

Pipelining
Lessons

• Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup = Number
pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and time
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

What Is
Pipelining

 Appendix A - Pipelining 10

MIPS Without
Pipelining

What Is
Pipelining

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D

 Appendix A - Pipelining 11

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the instruction
register (IR); increment the PC by 4 to address the next sequential
instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4

 Appendix A - Pipelining 12

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31

 Appendix A - Pipelining 13

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s a load
or a Branch).
If an ALU, actually do the operation. If an address calculation, figure out
how to obtain the address and stash away the location of that address for
the next cycle.

 Appendix A - Pipelining 14

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this is an ALU, do nothing.
If a load or store, then access memory.

 Appendix A - Pipelining 15

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.

 Appendix A - Pipelining 16

The Basic Pipeline For MIPS

Latches between
each stage provide
pipelining.

 Appendix A - Pipelining 17

The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Figure 3.3

 Appendix A - Pipelining 18

Pipeline Hurdles
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this
combination of instructions (single person to fold
and put clothes away)

– Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

– Control hazards: Pipelining of branches & other
instructions that change the PC

– Common solution is to stall the pipeline until the
hazard is resolved, inserting one or more
“bubbles” in the pipeline

 Appendix A - Pipelining 19

Pipeline Hurdles
Definition
• conditions that lead to incorrect behavior if not fixed
• Structural hazard

– two different instructions use same h/w in same cycle
• Data hazard

– two different instructions use same storage
– must appear as if the instructions execute in correct order

• Control hazard
– one instruction affects which instruction is next

Resolution
• Pipeline interlock logic detects hazards and fixes them
• simple solution: stall -
• increases CPI, decreases performance
• better solution: partial stall -
• some instruction stall, others proceed better to stall early than late

 Appendix A - Pipelining 20

Structural Hazards
When two or
more different
instructions want
to use same
hardware
resource in same
cycle

e.g., MEM uses
the same memory
port as IF as
shown in this
slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Figure 3.6

 Appendix A - Pipelining 21

Structural Hazards

This is another
way of looking
at the effect of
a stall.I

n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7

 Appendix A - Pipelining 22

Structural Hazards

This is another way to represent the stall we saw on
the last few pages.

 Appendix A - Pipelining 23

Structural Hazards

Dealing with Structural Hazards

Stall
• low cost, simple
• Increases CPI
• use for rare case since stalling has performance effect

Pipeline hardware resource
• useful for multi-cycle resources

• good performance
• sometimes complex e.g., RAM

Replicate resource
• good performance
• increases cost (+ maybe interconnect delay)

• useful for cheap or divisible resources

 Appendix A - Pipelining 24

Structural Hazards
Structural hazards are reduced with these rules:
• Each instruction uses a resource at most once
• Always use the resource in the same pipeline stage

• Use the resource for one cycle only

Many RISC ISA’a designed with this in mind

Sometimes very complex to do this. For example, memory of
necessity is used in the IF and MEM stages.

Some common Structural Hazards:
• Memory - we’ve already mentioned this one.
• Floating point - Since many floating point instructions require

many cycles, it’s easy for them to interfere with each other.
• Starting up more of one type of instruction than there are

resources. For instance, the PA-8600 can support two ALU +
two load/store instructions per cycle - that’s how much hardware
it has available.

 Appendix A - Pipelining 25

Structural Hazards

We want to compare the performance of two machines. Which machine is faster?
• Machine A: Dual ported memory - so there are no memory stalls
• Machine B: Single ported memory, but its pipelined implementation has a 1.05

times faster clock rate
Assume:
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

 SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

 = Pipeline Depth
 SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)

 x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05
 = 0.75 x Pipeline Depth
 SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

This is the example on Page 144.

 Appendix A - Pipelining 26

Data Hazards

These occur when at any time, there are
instructions active that need to access the
same data (memory or register) locations.

Where there’s real trouble is when we have:

instruction A
instruction B

and B manipulates (reads or writes) data
before A does. This violates the order of the
instructions, since the architecture implies
that A completes entirely before B is
executed.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 Appendix A - Pipelining 27

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.

Execution Order is:
InstrI

InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3

 Appendix A - Pipelining 28

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i
– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

Execution Order is:
InstrI

InstrJ

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

 Appendix A - Pipelining 29

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes

Execution Order is:
InstrI

InstrJ

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

 Appendix A - Pipelining 30

Data Hazards

Simple Solution to RAW

• Hardware detects RAW and stalls
• Assumes register written then read each cycle

+ low cost to implement, simple
-- reduces IPC

• Try to minimize stalls

Minimizing RAW stalls

• Bypass/forward/short-circuit (We will use the word “forward”)
• Use data before it is in the register

+ reduces/avoids stalls
-- complex

• Crucial for common RAW hazards

 Appendix A - Pipelining 31

Data Hazards

The use of the result of the ADD instruction in the next three instructions causes a
hazard, since the register is not written until after those instructions read it.

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9

 Appendix A - Pipelining 32

Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data
available to the input of the ALU for
subsequent instructions, even though the
generating instruction hasn’t gotten to WB
in order to write the memory or registers.

Figure 3.10

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

 Appendix A - Pipelining 33

Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after
the MEM stage.

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Figure 3.12

 Appendix A - Pipelining 34

Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown
here.

Figure 3.13

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

 Appendix A - Pipelining 35

Data Hazards
This is another
representation

of the stall.

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

 Appendix A - Pipelining 36

Data Hazards
Instruction scheduled by compiler - move instruction in order to reduce stall.

lw Rb, b -- code sequence for a = b+c before scheduling
lw Rc, c
Add Ra, Rb, Rc -- stall
sw a, Ra
lw Re, e -- code sequence for d = e+f before scheduling
lw Rf, f
sub Rd, Re, Rf -- stall
sw d, Rd

Arrangement of code after scheduling.

lw Rb, b
lw Rc, c
lw Re, e
Add Ra, Rb, Rc
lw Rf, f
sw a, Ra
sub Rd, Re, Rf
sw d, Rd

Pipeline Scheduling

 Appendix A - Pipelining 37

Data Hazards Pipeline Scheduling

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

 Appendix A - Pipelining 38

Control Hazards

A control hazard is when we
need to find the destination
of a branch, and can’t fetch
any new instructions until
we know that destination.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 Appendix A - Pipelining 39

Control Hazard on
Branches

Three Stage Stall

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

 Appendix A - Pipelining 40

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
(Whoa! How did we get that 1.9???)

• Two part solution to this dramatic increase:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ^ 0

• MIPS Solution:
– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage

• must be fast
• can't afford to subtract
• compares with 0 are simple
• Greater-than, Less-than test sign-bit, but not-equal must OR all bits
• more general compares need ALU

– 1 clock cycle penalty for branch versus 3

In the next chapter, we’ll look at ways to avoid the branch all together.

Control Hazards

 Appendix A - Pipelining 41

Five Branch Hazard
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome

Control Hazards

 Appendix A - Pipelining 42

#4: Execute Both Paths

#5: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– MIPS uses this

Branch delay of length n

Control Hazards Five Branch Hazard
Alternatives

 Appendix A - Pipelining 43

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in

computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple instructions
issued per clock (superscalar)

Control Hazards

 Appendix A - Pipelining 44

Evaluating Branch
Alternatives

Scheduling Branch CPI speedup v. Speedup v.
 scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Control Hazards

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

 Appendix A - Pipelining 45

Pipelining Introduction
Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up Š Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

Control Hazards

 Appendix A - Pipelining 46

Compiler “Static”
Prediction of

Taken/Untaken Branches

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

n

0%

10%

20%

30%

40%

50%

60%

70%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

jsp
2 or

a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
ti

on
 R

at
e

0%

2%

4%

6%

8%

10%

12%

14%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Always taken Taken backwards
Not Taken Forwards

Control Hazards
The compiler can program what it thinks
the branch direction will be. Here are
the results when it does so.

 Appendix A - Pipelining 47

Compiler “Static”
Prediction of

Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot

• Two strategies
– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch

based on prior run

Control Hazards

 Appendix A - Pipelining 48

Evaluating Static
Branch Prediction

Strategies

• Misprediction ignores
frequency of branch

• “Instructions between
mispredicted branches”
is a better metric

In
st

ru
ct

io
ns

 p
e

r
m

is
p

re
di

ct
e

d
 b

ra
n

ch

1

10

100

1000

10000

100000

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Profile-based Direction-based

Control Hazards

 Appendix A - Pipelining 49

What Makes Pipelining Hard?
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 Appendix A - Pipelining 50

What Makes
Pipelining Hard?

Examples of interrupts:
• Power failing,
• Arithmetic overflow,
• I/O device request,
• OS call,
• Page fault

Interrupts (also known as: faults,
exceptions, traps) often require

• surprise jump (to vectored address)
• linking return address
• saving of PSW (including CCs)

• state change (e.g., to kernel mode)

Interrupts cause
great havoc!

There are 5 instructions executing
in 5 stage pipeline when an
interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?

 Appendix A - Pipelining 51

What Makes
Pipelining Hard?

Interrupts cause
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential
solution #1: save multiple PCs
• Save current and next PC
• Special return sequence, more complex hardware
solution #2: single PC plus
• Branch delay bit
• PC points to branch instruction

Stage Problem that causes the interrupt

IF Page fault on instruction fetch; misaligned memory
access; memory-protection violation

ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

 Appendix A - Pipelining 52

What Makes
Pipelining Hard?

• Simultaneous exceptions in more than one pipeline stage, e.g.,
– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage
– Add fault will happen BEFORE load fault

• Solution #1
– Interrupt status vector per instruction
– Defer check until last stage, kill state update if exception

• Solution #2
– Interrupt ASAP
– Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause
great havoc!

 Appendix A - Pipelining 53

What Makes
Pipelining Hard?

Here’s what happens on a data page fault.

 1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W < page fault

i+2 F D X M W < squash

i+3 F D X M W < squash

i+4 F D X M W < squash

i+5 trap > F D X M W

i+6 trap handler > F D X M W

Interrupts cause
great havoc!

 Appendix A - Pipelining 54

What Makes
Pipelining Hard?

Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register change

during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes are no longer the

last stage.

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

Complex
Instructions

 Appendix A - Pipelining 55

Handling Multi-cycle Operations

Multi-cycle instructions also
lead to pipeline complexity.

A very lengthy instruction
causes everything else in
the pipeline to wait for it.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 Appendix A - Pipelining 56

Multi-Cycle
Operations

Floating point gives long execution time.

This causes a stall of the pipeline.

It’s possible to pipeline the FP execution unit so it can initiate new instructions
without waiting full latency. Can also have multiple FP units.

FP Instruction Latency Initiation Rate

Add, Subtract 4 3

Multiply 8 4

Divide 36 35

Square root 112 111

Negate 2 1

Absolute value 2 1

FP compare 3 2

Floating Point

 Appendix A - Pipelining 57

Divide, Square Root take -10X to -30X longer than Add

– Interrupts?
– Adds WAR and WAW hazards since pipelines are

no longer same length

Multi-Cycle
Operations

Floating Point

1 2 3 4 5 6 7 8 9 10 11
i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2: no WAW, but this complicates an interrupt
I + 4: no WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue

 Appendix A - Pipelining 58

Summary of Pipelining Basics
• Hazards limit performance

– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; pipelining
helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Branch delay slots
– Branch prediction

 Appendix A - Pipelining 59

Credits
I have not written these notes by myself. There’s a great deal of fancy

artwork here that takes considerable time to prepare.

I have borrowed from:

Wen-mei & Patel: http://courses.ece.uiuc.edu/ece511/lectures/lecture3.ppt

Patterson: http://www.cs.berkeley.edu/~pattrsn/252S98/index.html

Rabaey: (He used lots of Patterson material):

http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm

Katz: (Again, he borrowed heavily from Patterson):

http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html

Mark Hill: (Follows text fairly well): http://www.cs.wisc.edu/~markhill/cs752/

http://www.cs.berkeley.edu/~pattrsn/252S98/index.html
http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm
http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html
http://www.cs.wisc.edu/~markhill/cs752/
http://www.cs.berkeley.edu/~pattrsn/252S98/index.html
http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm
http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html
http://www.cs.wisc.edu/~markhill/cs752/

 Appendix A - Pipelining 60

Summary
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

 1

 Appendix A - Pipelining 1

The Big Picture
Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance
Focus

BOXBOX Si fin - Body!

DrainSource

Gate

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

Mult2

Mac2
Mult1 Mac1

S reg X reg
Add,
Sub,
Shift

f2() {
 f3(s2, &j, &i);
 *s2->p = 10;
 i = *s2->q + i;
}

i1: ld r1, b <p1>
i2: ld r2, c <p1>
i3: ld r5, z <p3>
i4: mul r6, r5, 3 <p3>
i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

The big picture. Talk about the levels of abstraction. Talk about the fact that
this is where all programs get ushered into hardware execution.

Circuits are increasing providing both opportunities (resources, bandwidth) and
challenges (noise, power).

Circuits are locally designed; software is globally intertwined

Software is increasingly over designed for portability and productivity.

The path between the two domains is increasingly stressed and inadequate due
to this mismatch.

The focus of the thrust is to provide a very strong path from the productivity
oriented software domain into the performance oriented hardware domain.

Translate device/circuit level innovations into visible benefit at the
application/software level!

 2

 Appendix A - Pipelining 2

Instruction Set Architecture

Application

Instruction Set Architecture

Implementation

…SPARC MIPS ARM x86 HPPA IA64…

Intel Pentium X
AMD K6, Athlon, Opteron
Transmeta Crusoe TM5x00

 3

 Appendix A - Pipelining 3

Instruction Set Architecture

• Strong influence on cost/performance

• New ISAs are rare, but versions are
not
– 16-bit, 32-bit and 64-bit X86 versions

• Longevity is a strong function of
marketing prowess

 4

 Appendix A - Pipelining 4

• Strongly constrained by the number of
bits available to instruction encoding

• Opcodes/operands
• Registers/memory
• Addressing modes
• Orthogonality
• 0, 1, 2, 3 address machines
• Instruction formats
• Decoding uniformity

Traditional Issues

 5

 Appendix A - Pipelining 5

Introduction
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

6

 Appendix A - Pipelining 6

What Is Pipelining

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

7

 Appendix A - Pipelining 7

What Is Pipelining

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

8

 Appendix A - Pipelining 8

What Is Pipelining
Start work ASAP

• Pipelined laundry takes
3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

9

 Appendix A - Pipelining 9

Pipelining
Lessons

• Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup = Number
pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and time
to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

What Is
Pipelining

10

 Appendix A - Pipelining 10

MIPS Without
Pipelining

What Is
Pipelining

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D

11

 Appendix A - Pipelining 11

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the instruction
register (IR); increment the PC by 4 to address the next sequential
instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4

12

 Appendix A - Pipelining 12

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31

13

 Appendix A - Pipelining 13

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s a load
or a Branch).
If an ALU, actually do the operation. If an address calculation, figure out
how to obtain the address and stash away the location of that address for
the next cycle.

14

 Appendix A - Pipelining 14

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this is an ALU, do nothing.
If a load or store, then access memory.

15

 Appendix A - Pipelining 15

MIPS Functions
What Is

Pipelining
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr.
Calc

IR L
M
D

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.

16

 Appendix A - Pipelining 16

The Basic Pipeline For MIPS

Latches between
each stage provide
pipelining.

17

 Appendix A - Pipelining 17

The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Figure 3.3

 18

 Appendix A - Pipelining 18

Pipeline Hurdles
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this
combination of instructions (single person to fold
and put clothes away)

– Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

– Control hazards: Pipelining of branches & other
instructions that change the PC

– Common solution is to stall the pipeline until the
hazard is resolved, inserting one or more
“bubbles” in the pipeline

 19

 Appendix A - Pipelining 19

Pipeline Hurdles
Definition
• conditions that lead to incorrect behavior if not fixed
• Structural hazard

– two different instructions use same h/w in same cycle
• Data hazard

– two different instructions use same storage
– must appear as if the instructions execute in correct order

• Control hazard

– one instruction affects which instruction is next

Resolution
• Pipeline interlock logic detects hazards and fixes them
• simple solution: stall -
• increases CPI, decreases performance
• better solution: partial stall -
• some instruction stall, others proceed better to stall early than late

20

 Appendix A - Pipelining 20

Structural Hazards
When two or
more different
instructions want
to use same
hardware
resource in same
cycle

e.g., MEM uses
the same memory
port as IF as
shown in this
slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Figure 3.6

21

 Appendix A - Pipelining 21

Structural Hazards

This is another
way of looking
at the effect of
a stall.I

n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7

22

 Appendix A - Pipelining 22

Structural Hazards

This is another way to represent the stall we saw on
the last few pages.

 23

 Appendix A - Pipelining 23

Structural Hazards

Dealing with Structural Hazards

Stall

• low cost, simple
• Increases CPI

• use for rare case since stalling has performance effect

Pipeline hardware resource

• useful for multi-cycle resources

• good performance
• sometimes complex e.g., RAM

Replicate resource
• good performance

• increases cost (+ maybe interconnect delay)

• useful for cheap or divisible resources

 24

 Appendix A - Pipelining 24

Structural Hazards
Structural hazards are reduced with these rules:

• Each instruction uses a resource at most once

• Always use the resource in the same pipeline stage
• Use the resource for one cycle only

Many RISC ISA’a designed with this in mind

Sometimes very complex to do this. For example, memory of
necessity is used in the IF and MEM stages.

Some common Structural Hazards:

• Memory - we’ve already mentioned this one.
• Floating point - Since many floating point instructions require

many cycles, it’s easy for them to interfere with each other.

• Starting up more of one type of instruction than there are
resources. For instance, the PA-8600 can support two ALU +
two load/store instructions per cycle - that’s how much hardware
it has available.

25

 Appendix A - Pipelining 25

Structural Hazards

We want to compare the performance of two machines. Which machine is faster?
• Machine A: Dual ported memory - so there are no memory stalls
• Machine B: Single ported memory, but its pipelined implementation has a 1.05

times faster clock rate
Assume:
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

 SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

 = Pipeline Depth
 SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)

 x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05
 = 0.75 x Pipeline Depth
 SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

This is the example on Page 144.

 26

 Appendix A - Pipelining 26

Data Hazards

These occur when at any time, there are
instructions active that need to access the
same data (memory or register) locations.

Where there’s real trouble is when we have:

instruction A
instruction B

and B manipulates (reads or writes) data
before A does. This violates the order of the
instructions, since the architecture implies
that A completes entirely before B is
executed.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 27

 Appendix A - Pipelining 27

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.

Execution Order is:
InstrI

InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3

 28

 Appendix A - Pipelining 28

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i
– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

Execution Order is:
InstrI

InstrJ

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

 29

 Appendix A - Pipelining 29

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes

Execution Order is:
InstrI

InstrJ

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

30

 Appendix A - Pipelining 30

Data Hazards

Simple Solution to RAW

• Hardware detects RAW and stalls
• Assumes register written then read each cycle

+ low cost to implement, simple
-- reduces IPC

• Try to minimize stalls

Minimizing RAW stalls

• Bypass/forward/short-circuit (We will use the word “forward”)
• Use data before it is in the register

+ reduces/avoids stalls
-- complex

• Crucial for common RAW hazards

31

 Appendix A - Pipelining 31

Data Hazards

The use of the result of the ADD instruction in the next three instructions causes a
hazard, since the register is not written until after those instructions read it.

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9

32

 Appendix A - Pipelining 32

Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data
available to the input of the ALU for
subsequent instructions, even though the
generating instruction hasn’t gotten to WB
in order to write the memory or registers.

Figure 3.10

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

33

 Appendix A - Pipelining 33

Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after
the MEM stage.

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Figure 3.12

34

 Appendix A - Pipelining 34

Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown
here.

Figure 3.13

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

35

 Appendix A - Pipelining 35

Data Hazards
This is another
representation

of the stall.

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

LW R1, 0(R2) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

36

 Appendix A - Pipelining 36

Data Hazards
Instruction scheduled by compiler - move instruction in order to reduce stall.

lw Rb, b -- code sequence for a = b+c before scheduling
lw Rc, c
Add Ra, Rb, Rc -- stall
sw a, Ra
lw Re, e -- code sequence for d = e+f before scheduling
lw Rf, f
sub Rd, Re, Rf -- stall
sw d, Rd

Arrangement of code after scheduling.

lw Rb, b
lw Rc, c
lw Re, e
Add Ra, Rb, Rc
lw Rf, f
sw a, Ra
sub Rd, Re, Rf
sw d, Rd

Pipeline Scheduling

37

 Appendix A - Pipelining 37

Data Hazards Pipeline Scheduling

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

 38

 Appendix A - Pipelining 38

Control Hazards

A control hazard is when we
need to find the destination
of a branch, and can’t fetch
any new instructions until
we know that destination.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

39

 Appendix A - Pipelining 39

Control Hazard on
Branches

Three Stage Stall

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

Reg A
L

U

DMemIfetch Reg

40

 Appendix A - Pipelining 40

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
(Whoa! How did we get that 1.9???)

• Two part solution to this dramatic increase:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ^ 0

• MIPS Solution:
– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage

• must be fast
• can't afford to subtract
• compares with 0 are simple
• Greater-than, Less-than test sign-bit, but not-equal must OR all bits
• more general compares need ALU

– 1 clock cycle penalty for branch versus 3

In the next chapter, we’ll look at ways to avoid the branch all together.

Control Hazards

41

 Appendix A - Pipelining 41

Five Branch Hazard
Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome

Control Hazards

42

 Appendix A - Pipelining 42

#4: Execute Both Paths

#5: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– MIPS uses this

Branch delay of length n

Control Hazards Five Branch Hazard
Alternatives

43

 Appendix A - Pipelining 43

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful in

computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple instructions
issued per clock (superscalar)

Control Hazards

44

 Appendix A - Pipelining 44

Evaluating Branch
Alternatives

Scheduling Branch CPI speedup v. Speedup v.
 scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Control Hazards

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

45

 Appendix A - Pipelining 45

Pipelining Introduction
Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up Š Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

Control Hazards

 46

 Appendix A - Pipelining 46

Compiler “Static”
Prediction of

Taken/Untaken Branches
Fr

eq
ue

nc
y

of
 M

is
pr

ed
ic

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

jsp
2 or

a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
ti

on
 R

at
e

0%

2%

4%

6%

8%

10%

12%

14%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Always taken Taken backwards
Not Taken Forwards

Control Hazards
The compiler can program what it thinks
the branch direction will be. Here are
the results when it does so.

 47

 Appendix A - Pipelining 47

Compiler “Static”
Prediction of

Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot

• Two strategies
– Backward branch predict taken, forward branch not taken
– Profile-based prediction: record branch behavior, predict branch

based on prior run

Control Hazards

 48

 Appendix A - Pipelining 48

Evaluating Static
Branch Prediction

Strategies

• Misprediction ignores
frequency of branch

• “Instructions between
mispredicted branches”
is a better metric

In
st

ru
ct

io
ns

 p
e

r
m

is
pr

ed
ic

te
d

b
ra

nc
h

1

10

100

1000

10000

100000

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Profile-based Direction-based

Control Hazards

 49

 Appendix A - Pipelining 49

What Makes Pipelining Hard?
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 50

 Appendix A - Pipelining 50

What Makes
Pipelining Hard?

Examples of interrupts:
• Power failing,

• Arithmetic overflow,
• I/O device request,
• OS call,
• Page fault

Interrupts (also known as: faults,
exceptions, traps) often require

• surprise jump (to vectored address)
• linking return address
• saving of PSW (including CCs)

• state change (e.g., to kernel mode)

Interrupts cause
great havoc!

There are 5 instructions executing
in 5 stage pipeline when an
interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?

 51

 Appendix A - Pipelining 51

What Makes
Pipelining Hard?

Interrupts cause
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential
solution #1: save multiple PCs
• Save current and next PC
• Special return sequence, more complex hardware
solution #2: single PC plus
• Branch delay bit
• PC points to branch instruction

Stage Problem that causes the interrupt

IF Page fault on instruction fetch; misaligned memory
access; memory-protection violation

ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

 52

 Appendix A - Pipelining 52

What Makes
Pipelining Hard?

• Simultaneous exceptions in more than one pipeline stage, e.g.,

– Load with data page fault in MEM stage
– Add with instruction page fault in IF stage

– Add fault will happen BEFORE load fault
• Solution #1

– Interrupt status vector per instruction
– Defer check until last stage, kill state update if exception

• Solution #2
– Interrupt ASAP

– Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause
great havoc!

 53

 Appendix A - Pipelining 53

What Makes
Pipelining Hard?

Here’s what happens on a data page fault.

 1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W < page fault

i+2 F D X M W < squash

i+3 F D X M W < squash

i+4 F D X M W < squash

i+5 trap > F D X M W

i+6 trap handler > F D X M W

Interrupts cause
great havoc!

 54

 Appendix A - Pipelining 54

What Makes
Pipelining Hard?

Complex Addressing Modes and Instructions
• Address modes: Autoincrement causes register change

during instruction execution
– Interrupts? Need to restore register state
– Adds WAR and WAW hazards since writes are no longer the

last stage.

• Memory-Memory Move Instructions
– Must be able to handle multiple page faults
– Long-lived instructions: partial state save on interrupt

• Condition Codes

Complex
Instructions

 55

 Appendix A - Pipelining 55

Handling Multi-cycle Operations

Multi-cycle instructions also
lead to pipeline complexity.

A very lengthy instruction
causes everything else in
the pipeline to wait for it.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-
Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to
Implement?

A.5 Extending the MIPS Pipeline to
Handle Multi-cycle Operations

 56

 Appendix A - Pipelining 56

Multi-Cycle
Operations

Floating point gives long execution time.

This causes a stall of the pipeline.

It’s possible to pipeline the FP execution unit so it can initiate new instructions
without waiting full latency. Can also have multiple FP units.

FP Instruction Latency Initiation Rate

Add, Subtract 4 3

Multiply 8 4

Divide 36 35

Square root 112 111

Negate 2 1

Absolute value 2 1

FP compare 3 2

Floating Point

 57

 Appendix A - Pipelining 57

Divide, Square Root take -10X to -30X longer than Add

– Interrupts?
– Adds WAR and WAW hazards since pipelines are

no longer same length

Multi-Cycle
Operations

Floating Point

1 2 3 4 5 6 7 8 9 10 11
i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2: no WAW, but this complicates an interrupt
I + 4: no WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue

 58

 Appendix A - Pipelining 58

Summary of Pipelining Basics
• Hazards limit performance

– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; pipelining
helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder
• Compilers reduce cost of data and control hazards

– Load delay slots
– Branch delay slots
– Branch prediction

 59

 Appendix A - Pipelining 59

Credits
I have not written these notes by myself. There’s a great deal of fancy

artwork here that takes considerable time to prepare.

I have borrowed from:

Wen-mei & Patel: http://courses.ece.uiuc.edu/ece511/lectures/lecture3.ppt

Patterson: http://www.cs.berkeley.edu/~pattrsn/252S98/index.html

Rabaey: (He used lots of Patterson material):

http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm

Katz: (Again, he borrowed heavily from Patterson):

http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html

Mark Hill: (Follows text fairly well): http://www.cs.wisc.edu/~markhill/cs752/

 60

 Appendix A - Pipelining 60

Summary
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

	The Big Picture
	Instruction Set Architecture
	Slide 3
	Traditional Issues
	Introduction
	What Is Pipelining
	Slide 7
	What Is Pipelining Start work ASAP
	Pipelining Lessons
	MIPS Without Pipelining
	MIPS Functions
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	The Basic Pipeline For MIPS
	Slide 17
	Pipeline Hurdles
	Slide 19
	Structural Hazards
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Data Hazards
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Control Hazards
	Control Hazard on Branches Three Stage Stall
	Branch Stall Impact
	Five Branch Hazard Alternatives
	Slide 42
	Delayed Branch
	Evaluating Branch Alternatives
	Pipelining Introduction Summary
	Compiler “Static” Prediction of Taken/Untaken Branches
	Slide 47
	Evaluating Static Branch Prediction Strategies
	What Makes Pipelining Hard?
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Handling Multi-cycle Operations
	Multi-Cycle Operations
	Floating Point
	Summary of Pipelining Basics
	Credits
	Summary
	The Big Picture
	Instruction Set Architecture
	Slide 3
	Traditional Issues
	Introduction
	What Is Pipelining
	Slide 7
	What Is Pipelining Start work ASAP
	Pipelining Lessons
	MIPS Without Pipelining
	MIPS Functions
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	The Basic Pipeline For MIPS
	Slide 17
	Pipeline Hurdles
	Slide 19
	Structural Hazards
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Data Hazards
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Control Hazards
	Control Hazard on Branches Three Stage Stall
	Branch Stall Impact
	Five Branch Hazard Alternatives
	Slide 42
	Delayed Branch
	Evaluating Branch Alternatives
	Pipelining Introduction Summary
	Compiler “Static” Prediction of Taken/Untaken Branches
	Slide 47
	Evaluating Static Branch Prediction Strategies
	What Makes Pipelining Hard?
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Handling Multi-cycle Operations
	Multi-Cycle Operations
	Floating Point
	Summary of Pipelining Basics
	Credits
	Summary

