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Review from last lecture
• Tracking and extrapolating technology part of 

architect’s responsibility
• Expect Bandwidth in disks, DRAM, network, and 

processors to improve by at least as much as the 
square of the improvement in Latency

• Quantify Cost (vs. Price)
– IC ≈ f(Area2) + Learning curve, volume, commodity, margins

• Quantify dynamic and static power
– Capacitance x Voltage2 x frequency, Energy vs. power

• Quantify dependability
– Reliability (MTTF vs. FIT), Availability (MTTF/(MTTF+MTTR)
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Outline
• Review
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
• F&P: Benchmarks age, disks fail,1 point fail 

danger
• 252 Administrivia
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion 
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Performance(X) Execution_time(Y)
n         = =

Performance(Y) Execution_time(X)

Definition: Performance
• Performance is in units of things per sec

– bigger is better

• If we are primarily concerned with response time

performance(x) =           1                   
execution_time(x)

" X is n times faster than Y"  means
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Performance: What to measure
• Usually rely on benchmarks vs. real workloads
• To increase predictability, collections of benchmark 

applications-- benchmark suites -- are popular
• SPECCPU: popular desktop benchmark suite

– CPU only, split between integer and floating point programs
– SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms
– SPECCPU2006 to be announced Spring 2006
– SPECSFS (NFS file server) and SPECWeb (WebServer) added as 

server benchmarks

• Transaction Processing Council measures server 
performance and cost-performance for databases

– TPC-C Complex query for Online Transaction Processing
– TPC-H models ad hoc decision support
– TPC-W  a transactional web benchmark
– TPC-App application server and web services benchmark
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How Summarize Suite Performance (1/5)

• Arithmetic average of execution time of all pgms?
– But they vary by 4X in speed, so some would be more important  

than others in arithmetic average

• Could add a weights per program, but how pick 
weight? 

– Different companies want different weights for their products

• SPECRatio: Normalize execution times to reference 
computer, yielding a ratio proportional to 
performance =

time on reference computer 
time on computer being rated
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How Summarize Suite Performance (2/5)

• If program SPECRatio on Computer A is 1.25 
times bigger than Computer B, then

B
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imeExecutionT
imeExecutionT

imeExecutionT
imeExecutionT

imeExecutionT
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==

==25.1

• Note that when comparing 2 computers as a ratio, 
execution times on the reference computer drop 
out, so choice of reference computer is irrelevant 
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How Summarize Suite Performance (3/5)

• Since ratios, proper mean is geometric mean 
(SPECRatio unitless, so arithmetic mean meaningless)

n
n

i
iSPECRatioeanGeometricM ∏

=

=
1

• 2 points make geometric mean of ratios attractive 
to summarize performance:

1. Geometric mean of the ratios is the same as the 
ratio of the geometric means

2. Ratio of geometric means 
= Geometric mean of performance ratios 
⇒ choice of reference computer is irrelevant!
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How Summarize Suite Performance (4/5)

• Does a single mean well summarize performance of 
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing 
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is 
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute 
the standard mean and standard deviation, and then 
take the exponent to convert back:
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How Summarize Suite Performance (5/5)

• Standard deviation is more informative if know 
distribution has a standard form

– bell-shaped normal distribution, whose data are symmetric 
around mean 

– lognormal distribution, where logarithms of data--not data 
itself--are normally distributed (symmetric) on a logarithmic 
scale

• For a lognormal distribution, we expect that 
68% of samples fall in range 
95% of samples fall in range 
• Note: Excel provides functions EXP(), LN(), and 

STDEV() that make calculating geometric mean 
and multiplicative standard deviation easy

[ ]gstdevmeangstdevmean ×,/
[ ]22 ,/ gstdevmeangstdevmean ×
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Example Standard Deviation (1/2)
• GM and multiplicative StDev of SPECfp2000 for Itanium 2

Outside 1 StDev
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Example Standard Deviation (2/2)
• GM and multiplicative StDev of SPECfp2000 for AMD Athlon
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Comments on Itanium 2 and Athlon
• Standard deviation of 1.98 for Itanium 2 is much 

higher-- vs. 1.40--so results will differ more widely 
from the mean, and therefore are likely less 
predictable

• SPECRatios falling within one standard deviation: 
– 10 of 14 benchmarks (71%) for Itanium 2
– 11 of 14 benchmarks (78%) for Athlon

• Thus, results are quite compatible with a 
lognormal distribution (expect 68% for 1 StDev)
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Fallacies and Pitfalls (1/2)
• Fallacies - commonly held misconceptions

– When discussing a fallacy, we try to give a counterexample. 
• Pitfalls - easily made mistakes. 

– Often generalizations of principles true in limited context
– Show Fallacies and Pitfalls to help you avoid these errors

• Fallacy: Benchmarks remain valid indefinitely
– Once a benchmark becomes popular, tremendous 

pressure to improve performance by targeted 
optimizations or by aggressive interpretation of the 
rules for running the benchmark: 
“benchmarksmanship.”

– 70 benchmarks from the 5 SPEC releases. 70% were 
dropped from the next release since no longer useful

• Pitfall: A single point of failure
– Rule of thumb for fault tolerant systems: make 

sure that every component was redundant so 
that no single component failure could bring 
down the whole system (e.g, power supply)
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Fallacies and Pitfalls (2/2)
• Fallacy - Rated MTTF of disks is 1,200,000 hours or

≈ 140 years, so disks practically never fail
• But disk lifetime is 5 years ⇒ replace a disk every 5 

years; on average, 28 replacements wouldn't fail
• A better unit: % that fail (1.2M MTTF = 833 FIT)
• Fail over lifetime: if had 1000 disks for 5 years

= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37 
= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

• But this is under pristine conditions
– little vibration, narrow temperature range ⇒ no power failures

• Real world: 3% to 6% of SCSI drives fail per year
– 3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

• 3% to 7% of ATA drives fail per year
– 3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]
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CS252: Administrivia
Instructor:   Prof David Patterson

Office: 635 Soda Hall, pattrsn@cs
Office Hours:  Tue 11 - noon or by appt.
(Contact Cecilia Pracher; cpracher@eecs)

T. A: Archana Ganapathi, archanag@eecs
Class: M/W, 11:00 - 12:30pm    203 McLaughlin (and online)
Text: Computer Architecture: A Quantitative Approach, 4th 
Edition (Oct, 2006), Beta, distributed for free provided report errors
Web page: http://www.cs/~pattrsn/courses/cs252-S06/

Lectures available online <9:00 AM day of lecture
Wiki page: ??
Reading assignment: Memory Hierarchy Basics Appendix C 
(handout) for Mon 1/30
Wed 2/1: Great ISA debate (3 papers) + Prerequisite Quiz
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Outline
• Review
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
• F&P: Benchmarks age, disks fail,1 point fail 

danger
• 252 Administrivia
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion 
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A "Typical" RISC ISA

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store: 

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS (- MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the 
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data 
path

– Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported 
data types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by RTL on 
architected registers and memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition 

diagram (STD)
• Lower symbolic STD to control points
• Implement controller
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5 Steps of MIPS Datapath
Figure A.2, Page A-8
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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Inst. Set Processor Controller

IR <= mem[PC]; 
PC <= PC + 4

A <= Reg[IRrs]; 
B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)
PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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Visualizing Pipelining
Figure A.2, Page A-8
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Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps).
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One Memory Port/Structural Hazards
Figure A.4, Page A-14
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One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)
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How do you “bubble” the pipe? 1/25/2006 CS252-s06, Lec 02-intro 30

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Data Hazard on R1
Figure A.6, Page A-17
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IF ID/RF EX MEM WB
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg



1/25/2006 CS252-s06, Lec 02-intro 37

HW Change for Forwarding
Figure A.23, Page A-37
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Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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Time (clock cycles)
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Data Hazard Even with Forwarding
Figure A.9, Page A-21
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load 
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
1/25/2006 CS252-s06, Lec 02-intro 42

Outline
• Review
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
• F&P: Benchmarks age, disks fail,1 point fail 

danger
• 252 Administrivia
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion 
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next 
SEQ PC

RD RD RD W
B 

D
at

a

• Interplay of instruction set design and cycle time.

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

ID
/EX

1/25/2006 CS252-s06, Lec 02-intro 46

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1sequential successor2........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n
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Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then
delay slot

add  $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add  $1,$2,$3 add  $1,$2,$3

if $1=0 then
sub $4,$5,$6

add  $1,$2,$3
if $1=0 then
sub $4,$5,$6
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Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful 

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to 
deeper pipelines and multiple issue, the branch 
delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more 
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches 
relatively cheaper
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Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Problems with Pipelining
• Exception:  An unusual event happens to an 

instruction during its execution  
– Examples: divide by zero, undefined opcode

• Interrupt:  Hardware signal to switch the 
processor to a new instruction stream  

– Example: a sound card interrupts when it needs more audio 
output samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or 
interrupt must appear between 2 instructions (Ii
and Ii+1)

– The effect of all instructions up to and including Ii is totalling
complete

– No effect of any instruction after Ii can take place 
• The interrupt (exception) handler either aborts 

program or restarts at instruction Ii+1

Precise Exceptions in Static Pipelines

Key observation: architected state only 
change in memory and register write stages.
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And In Conclusion:  Control and Pipelining
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
• F&P: Benchmarks age, disks fail,1 point fail danger
• Next time: Read Appendix A, record bugs online!
• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity
• Next time: Read Appendix C, record bugs online!

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=


