CS:APP Chapter 4
Computer Architecture

Wrap-Up

Randal E. Bryant

Carnegie Mellon University

http://csapp.cs.cmu.edu

CS:APP

Performance Metrics

Clock rate
m Measured in Megahertz or Gigahertz
m Function of stage partitioning and circuit design
o Keep amount of work per stage small

Rate at which instructions executed
m CPI: cycles per instruction
= On average, how many clock cycles does each instruction
require?
m Function of pipeline design and benchmark programs
e E.g., how frequently are branches mispredicted?

CS:APP

Overview

Wrap-Up of PIPE Design
m Performance analysis
m Fetch stage design
m Exceptional conditions

Modern High-Performance Processors
m Qut-of-order execution

CS:APP

CPI for PIPE

CPl=1.0
m Fetch instruction each clock cycle

m Effectively process new instruction almost every cycle
e Although each individual instruction has latency of 5 cycles

CPI>1.0
= Sometimes must stall or cancel branches

Computing CPI
m C clock cycles
m | instructions executed to completion
m B bubbles injected (C =1 + B)
CPI = C/1 = (I+B)/1 = 1.0+ B/
m Factor B/l represents average penalty due to bubbles

CS:APP

CPI for PIPE (Cont.)

B/l=LP + MP + RP
m LP: Penalty due to load/use hazard stalling

® Fraction of instructions that are loads

e Fraction of load instructions requiring stall

o Number of bubbles injected each time
= LP=0.25*0.20 * 1 = 0.05

m MP: Penalty due to mispredicted branches
® Fraction of instructions that are cond. jumps

e Fraction of cond. jumps mispredicted
e Number of bubbles injected each time
= MP=0.20*0.40*2=0.16

m RP: Penalty due to ret instructions

® Fraction of instructions that are returns

o Number of bubbles injected each time
= RP=0.02*3=0.06

m Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27

= CPI=1.27 (Not bad!)

Standard Fetch Timing

need_regids, need_valC

Typical Values

0.25
0.20
1

0.20

0.40

0.02

CS:APP

Select PC
|\< | Mem. Read | | Increment |
| | I ‘
— _/
—~
1 clock cycle

m Must Perform Everything in Sequence

m Can’t compute incremented PC until know how much to

increment it by

CS:APP

Fetch Logic Revisited

M_icode
M_Bch
M_valA

During Fetch Cycle Wicode
1. Select PC B+ = Bl - W o
2. Read bytes from _-
instruction memory T
3. Examin_e icode to - increment
determine

instruction length
4. Increment PC

Instruction
memory

Timing
m Steps 2 & 4 require
significant amount

of time (r

predPC

-6- CS:APP

A Fast PC Increment Circuit

incrPC

1

High-order 29 bits Low-order 3 bits
MUX carry
0 1

A
29-bit
Slow incre- i..t 3-bit adder Fast
menter
rieed_regids
') ‘0
High-order 29 bits need_ValC
I Low-order 3 bits
PC
_g— CS:APP

More Realistic Fetch Logic

Other PC Controls

Modified Fetch Timing

need_regids, need_valC f Y
Select PC \3'b't add I I l
\' Mem. Read | | MUX ! 1 Byte 0 Bytes 1-5
| | Fetch Instr. | .| Current
Control Length Instruction
Incrementer v [}
\), Standard I I [| Current Block
anaara cycie nstruction
~ Cache f
1] Next Block

1 clock cycle

Fetch Box
m Integrated into instruction cache
m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block

m Works ahead to fetch next block
o As reaches end of current block
e At branch target

29-Bit Incrementer
m Acts as soon as PC selected
= Output not needed until final MUX
m Works in parallel with memory read

-9- CS:APP -10- CS:APP
Exceptions Exception Examples
m Conditions under which pipeline cannot continue normal .
operation Pip Detect in Fetch Stage
Causes jmp $-1 # Invalid jump target
m Halt instruction (Current)
= Bad address for instruction or data (Previous) -byte OxFF # Invalid instruction code
m Invalid instruction (Previous)
L . halt # Halt instruction
m Pipeline control error (Previous)
Desired Action Detect in Memory Stage
m Complete some instructions irmovl $100,%eax
e Either current or previous (depends on exception type) rmmovl %eax,0x10000 (3eax) # invalid address
m Discard others
m Call exception handler
e Like an unexpected procedure call
CS:APP

—-11- CS:APP -12-

Exceptions in Pipeline Processor #1 Exceptions in Pipeline Processor #2

demo-excl.ys # demo-exc2.ys
irmovl $100,%eax 0x000: xorl %eax, %eax # Set condition codes
rmmovl %eax,0x10000 (%eax) # Invalid address 0x002: jne t # Not taken
nop 0x007: irmovl $1,%eax
.byte OxFF # Invalid instruction code 0x00d: irmovl $2,%edx
0x013: halt
0x014: t: .byte OxFF # Target
0x000: irmovl $100,%eax FID|E|M|W /Exception detected 0x000: xorl %eax, %eax | F|D|E|M|W
0x006: rmmovl %eax,0x1000(%eax) | F [D | E | M 0x002: jne t F|D|E|M
0x00c: nop F|D|E 0x014: t: .byte OxFF FIDIE|M|W
0x00d: .byte OxFF F| D 0x???: (I'm lost!) F|ID| E|M|W
Exception detected 0x007: irmovl $1,%eax F|ID|E|M|W
Exception detected
Desired Behavior Desired Behavior
m rmmovl should cause exception = No exception should occur
-13 - CS:APP —-14 - CS:APP
Maintaining Exception Ordering Side Effects in Pipeline Processor

B0 O ENEY E

dstM - # demo-exc3.ys

irmovl $100,%eax
rmmovl %eax,0x10000 (%eax) # invalid address

dstM

addl %eax, %eax # Sets condition codes
valC ‘ valA ‘ valB dstE | dstM | srcA | srcB
icode | ifun rA B ‘ valC ‘ valP _
0x000: irmovl $100,%eax FID[E[M[wW /Exceptlon detected
0x006: rmmovl %eax,0x1000(%eax) | F | D | E | M
. 0x00c: addl % % F D E
= Add exception status field to pipeline registers wohes @ eax, weax

m Fetch stage sets to either “AOK,” “ADR” (when bad fetch
address), or “INS” (illegal instruction) Condition code set

= Decode & execute pass values through
= Memory either passes through or sets to “ADR”
m Exception triggered only when instruction hits write back

Desired Behavior
= rmmovl should cause exception

= No following instruction should have any effect
-15- CS:APP -16 - CS:APP

Avoiding Side Effects Rest of Exception Handling

Presence of Exception Should Disable State Update Calling Exception Handler

m When detect exception in memory stage m Push PC onto stack
e Disable condition code setting in execute e Either PC of faulting instruction or of next instruction

e Must happen in same clock cycle e Usually pass through pipeline along with exception status

= When exception passes to write-back stage = Jump to handler address
® Disable memory write in memory stage o Usually fixed address
e Disable condition code setting in execute stage e Defined as part of ISA
Implementation

Implementation
m Haven't tried it yet!

m Hardwired into the design of the PIPE simulator
m You have no control over this

—17- CS:APP -18- CS:APP
Instruction Control
Instruction Control Foan | Address
g s > Address= Re!iLf;;fift‘ent Control o .
H Retlrerpent Control struction ;Instrucﬂon
fo.pl Unit | Instruction Register | | | Instruction" | g——1] Bl
: ’ . Thstructions Cache File Decode
H Register |_| | Instruction” | q——
H . File Decode ’
: t Operations v
. * — Operations
Register| : Predict -
Updatosl i oKp o Grabs Instruction Bytes From Memory
i A 4 m Based on Current PC + Predicted Targets for Predicted Branches
I 9
: v Vv VvV VvV vV Vv m Hardware dynamically guesses whether branches taken/not taken
Integer/ | | General FP FP . (sG] Store Functional H
Branch | | Integer | | Add | |MulyDiv Units and (possibly) branch target
A . .
i i i i i i Translates Instructions Into Operations
Operation Resuls acar) | Addr = Primitive steps required to perform instruction
Data [Data
v LA 4 m Typical instruction requires 1-3 operations
yp q
Da Converts Register References Into Tags
Cache
Executio = Abstract identifier linking destination of one operation with sources
of later operations CSAPP

-19- CS:APP -20-

Execution

Register Prediction Operations
U 't Updates OK?
[T T T ! :
v
Integer/| | General FP FP Functional
Branch | | Integer Add Mult/Div| Load Store uncl!.‘ljr:]iias

v v v v i2 i2

Operation Results Addr] Addi

Data Data
v \A 4

Data
Cache

Execution

m Multiple functional units

e Each can operate in independently

m Operations performed as soon as operands available
e Not necessarily in program order
e Within limits of functional units

= Control logic

e Ensures behavior equivalent to sequential program execution

_21—

CS:APP

PentiumPro Block Diagram

P6 Microarchitecture
m PentiumPro
= Pentium Il
= Pentium Il

Microprocessor Report
2/16/95

Irestr TLE
(32 aritry) BK Instiuction Cache

}._

B

Reorder
Baffar
40 entrios)

4uops

General Decoder I

Uop

[RaT][RRAF|

Memory Heorder
Buffer (MOB)

ey 8K Dual-Portad Data Cache

| System Bus Interface | L2 Cache Interface

5) 55 i

i f i
‘b!ﬁ.}:dr *tad data im cotn

CPU Capabilities of Pentium lii

Multiple Instructions Can Execute in Parallel
= 1 load
= 1 store
= 2 integer (one may be branch)
= 1 FP Addition
= 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined

m Instruction Latency Cycles/Issue
= Load/ Store 3 1
= Integer Multiply 4 1
= Integer Divide 36 36
= Double/Single FP Multiply 5 2
= Double/Single FP Add 3 1
= Double/Single FP Divide 38 38

2o

PentiumPro Operation

Translates instructions dynamically into “Uops”

= 118 bits wide
= Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine

_24—

= Uop executed when
e Operands available
e Functional unit available

m Execution controlled by “Reservation Stations”
o Keeps track of data dependencies between uops
o Allocates resources

CS:APP

CS:APP

PentiumPro Branch Prediction

Critical to Performance
m 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history
m Adaptive algorithm

e Can recognize repeated patterns, e.g., alternating taken—not

taken

Handling BTB misses
m Detect in cycle 6

m Predict taken for negative offset, not taken for positive

® Loops vs. conditionals

—25—

Pentium 4 Block Diagram

Front-End BTB Instruction —
4K E ntries 1L B profotcher | — S sf‘hn
Instruction Decoder Microcade -
3 o <F
Trace Cache BTR Trace Cache }_ o
- e Guewe uad
‘ (512 Entries) (12K pops) N Pumped
[J, /Regisfer | 3.2GBis
[Memany L IrdegerFiosting Point uop Bueie 1 Bus
Féa—sq Eﬁ:@éﬂ Interface
l Unit
[s ger Fragister File 7 Bypass Malware Geler/ Bypmss i;
AU AGU Zxall || 2xaLu Slow 4 LU FF L2 Cache
TH FP (256K Byte
Load Stere simple ||| simple || | compise SSE "
address| [Address Instr. histr. Instr S3E2 ove 8-way)
1 F—\| scBrs

[L1 Data Cache [BKbyte 4vay)

m Next generation microarchitecture

—-27 —

Example Branch Prediction

Branch History

m Encode information about prior history of branch
instructions

= Predict whether or not branch will be taken

NT NT NT
T @ '(Yes? (No? (Not)) NT
T T T

State Machine
m Each time branch taken, transition to right
= When not taken, transition to left
m Predict branch taken when in state Yes! or Yes?

CS:APP —-26— CS:APP

Pentium 4 Features

1A32

uops
Instrs. P

Trace Cache Trace

Cache

Instruct.

L2 Cache Doa

Intel Tech. Journal l Operations
Q1, 2001

m Replaces traditional instruction cache

m Caches instructions in decoded form

m Reduces required rate for instruction decoder

Double-Pumped ALUs
m Simple instructions (add) run at 2X clock rate

Very Deep Pipeline
m 20+ cycle branch penalty
m Enables very high clock rates

= Slower than Pentium lll for a given clock rate

CS:APP -28 - CS:APP

Processor Summary

Design Technique
m Create uniform framework for all instructions
® Want to share hardware among instructions
m Connect standard logic blocks with bits of control logic

Operation
m State held in memories and clocked registers
= Computation done by combinational logic
m Clocking of registers/memories sufficient to control overall
behavior

Enhancing Performance
m Pipelining increases throughput and improves resource
utilization

= Must make sure maintains ISA behavior

—-29 - CS:APP

