15-213

“The course that gives CMU its Zip!”

Programming with Threads
Dec 5, 2002

Topics
m Shared variables
m The need for synchronization
m Synchronizing with semaphores
m Thread safety and reentrancy
m Races and deadlocks

class29.ppt

Threads Memory Model

Conceptual model:
m Each thread runs in the context of a process.

m Each thread has its own separate thread context.
e Thread ID, stack, stack pointer, program counter, condition codes, and
general purpose registers.

m All threads share the remaining process context.
e Code, data, heap, and shared library segments of the process virtual
address space.
e Open files and installed handlers
Operationally, this model is not strictly enforced:
= While register values are truly separate and protected....
= Any thread can read and write the stack of any other thread.

Mismatch between the conceptual and operation model is a source
of confusion and errors.

3 15-213, F'02

Shared Variables in Threaded C
Programs

Question: Which variables in a threaded C program are
shared variables?

m The answer is not as simple as “global variables are shared”
and “stack variables are private”.

Requires answers to the following questions:
m What is the memory model for threads?
m How are variables mapped to memory instances?
= How many threads reference each of these instances?

-2- 15-213, F'02

Example of Threads Accessing
Another Thread’s Stack

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)
int main() {
{ int myid = (int)vargp;
int i; static int svar = 0;
pthread_t tid;
char *msgs[N] = { printf ("[%d]: %s (svar=%d)\n",
"Hello from foo", myid, ptr[myid], ++svar);
"Hello from bar" }
}i
ptr = msgs;
for (i = 0; i < 2; i++) Peer threads access main thread’s stack
Pthread_create (&tid, indirectly through global ptr variable
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;
}

_4- 15-213, F'02

Mapping Variables to Mem. Instances Shared Variable Analysis

Global var: 1 instance (ptr [data])

. . n
Local automatic vars: 1 instance (i.m, msgs.m) Which variables are shared?

N / . . Variable Referenced by Referenced by Referenced by
char **ptr; /* global */ Local automatic var: 2 instances (instance main thread? peer thread 0? peer thread 1?
myid.pO[peer thread 0’s stack],
'?nt main () myid.pl[peer thread 1’s stack] ptr yes yes yes
int i) / _svar no yes yes
pthread_t tid; b ol yes O O
char *msgs[N] = { /* thread roytine */ msgs.m yes yes yes
"Hello from foo", void *threadfvoid *vargp) myid.p0 no yes no
"Hello from bar" { myid.pl no no yes
}; int myid = (int)vargp;
ptr = msgs; static int svar = 0;
for (1 = 0; i < 2; i++)) .) _ . Answer: A variable x is shared iff multiple threads
Pthread create (&tid, printf ("[%d): %s (svar=%d)\n", .
NULL, myid, ptrlmyid], ++svar); reference at least one instance of x. Thus:
thread, ! ® ptr, svar, and msgs are shared.
Mg / i and myid are NOT shared
; . . . ®mian .
S [AREREEE] RS (RIDAG) ¢ Local static var: 1 instance (svar [data]) * myt

-5-— 15-213, F'02 -6- 15-213, F'02

badent.c: An Improperly Assembly Code for Counter Loop
Synchronized Threaded Program

unsigned int cnt = 0; /* shared */ /* thread routine */ C code for counter loop .
void *count(void *arg) { for (i=0; i<NITERS; i++) Corresponding asm code
int main() { int i; cnt++; (gcc -00 -fforce-mem)
pthread t tidl, tid2; for (i=0; i<NITERS; i++) Lo:
Pthread_create(&tidl, NULL, cnt++; T R e
count, NULL); return NULL; Head (H;) cmpl $99999999, Seax
Pthread create (&tid2, NULL, } le .L12 !
count, NULL) ; J : 0
linux> ./badcnt - 415 amp_ '_L_l ________________
— JLl12:
Pthread join(tidl, NULL); BOOM! cnt=198841183 Load cnt (L) T 4 Load
o s - 1 12
Pthread join(tid2, NULL); T - Update cnt (U) leal 1(%eax),%edx # Update
if (cnt != (unsigned)NITERS*2) BOOM! cnt=198261801 Storecnt (S) | S A e 2220 |
printf ("BOOM! cnt=%d\n", linux> ./badent ’ " movl -4 (%ebp) , seax
cnt) ; inux> ./badcn . ’
else BOOM! cnt=198269672 Tail (T) ::3; i ;Z:aﬁ ,(:::;)
rintf ("OK cnt=%d\n", X !
By cnt should be s
¢ 05 75 X
} equal to 200,000,000.

What went wrong?!
-7- 15-213, F’02 -8- 15-213, F'02

Concurrent Execution

Key idea: In general, any sequentially consistent
interleaving is possible, but some are incorrect!

m |, denotes that thread i executes instruction |
m %eax;is the contents of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt

c

By
1= =]

[

=N =]==] =
r
N
1
NIN|IN|=|=|=|=l0|0|OC

OK

_9- 15-213, F'02

Concurrent Execution (cont)

How about this ordering?

i (thread) instr; %eax, %eax, cnt

_.
| T

N|==]=|NIN|N[N =
(2]
N

We can clarify our understanding of concurrent
execution with the help of the progress graph

-11- 15-213, F'02

Concurrent Execution (cont)

Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2.

i (thread) instr; %eax, %eax, cnt
1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 U, - 1 1
2 S, - 1 1
2 T, - 1 1
Oops!
—10 - 15-213, F'02

Progress Graphs

Thread 2 A progress graph d_epicts
the discrete execution
state space of concurrent
T, threads.
(Lv SZ)
° Each axis corresponds to
S, the sequential order of
instructions in a thread.

V)
2 Each point corresponds to
‘ ° ‘ ° * a possible execution state
L, (Inst,, Inst,).
H) ’))) E.g., (L, S,) denotes state
2

where thread 1 has
= = . «— Thread 1 completed L, and thread
2 has completed S..

-12- 15-213, F'02

Trajectories in Progress Graphs Critical Sections and Unsafe Regions

Thread 2)) Thread 2 L,U,and S form a
A ftrajectory is a sequence critical section with
° ° ° ° of legal state transitions respect to the shared
T, that describes one possible T, variable cnt.
. . . . concurrent execution of
s, T the threads. s, i Instructions in critical
. . . . |) : : sections (wrt to some
Example: critical . : : . . shared variable) should
U, section < U, ' Unsafe region ! not be interleaved.
. . . H1, L1, U1, H2, L2, wrt ent i :
)) ’ S1,T1, U2, S2, T2 . : Sets of states where such
2 2 ; interleaving occurs
° ° A ° ° T T M ° * form unsafe regions.
H, H,
= > > Thread 1 Th d1
H1 I'1 U1 S1 T1 I-|1 L1 U1 S1 T1 e
critical section wrt cnt
13- 15-213, F02 —14- 15-213, F02
Safe and Unsafe Trajectories Semaphores
Thread 2 . . Py
Question: How can we guarantee a safe trajectory?
° ° %_"_" m We must synchronize the threads so that they never enter an
T,| Safetrajectory unsafe state.
2 Def: A trajectory is safe
. SO) A iff it doesn’t touch any Classic solution: Dijkstra's P and V operations on
S, Unsafe region Unsafe part of an unsafe region. semaphores
> : trajectory ’ L - .
critical 'Y : :] ; Claim: A trajectory is m semaphore: non-negative integer synchronization variable.
section < U ; i correct (wrt cnt) iff itis ® P(s): [while (s == 0) wait(); s--;]
wrt cnt . . . 3 . safe. » Dutch for "Proberen" (test)
A ' .
L, o V(s): [s++; 1]
R RS I R . » Dutch for "Verhogen" (increment)
H 2 m OS guarantees that operations between brackets [] are
2 executed indivisibly.
v s 1 - Threadi ® Only one P or V operation at a time can modify s.
1 1 1 1 1
~— ® When while loop in P terminates, only that P can decrement s.

critical section wrt cnt . .
- Semaphore invariant: (s >= 0)

-15- 15-213, F'02 -16— 15-213, F'02

Safe Sharing with Semaphores

Here is how we would use P and V operations to
synchronize the threads that update cnt.

/* Semaphore s is initially 1 */

/* Thread routine */
void *count (void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(s);
cnt++;
Vi(s);

}

return NULL;

—17 —

POSIX Semaphores

Safe Sharing With Semaphores

Thread 2
1 1 0 0 0 0 1 1
T2
1 1,0 o Jooo,0 1 1
V(s)
0 L0 ,oo o0
S,
0 L0 Lo 0
U, 0 0 Unsafe region 0 o
. o1 o1 - . .
L,
0 L0 Lo o0
P(s) 1 1 0 0 0 0 1 1
H,
1 1 0 0 0 0 1 1
H, P(s) L, U, S Vis) T,
Initially
s=1
15-213, F'02 ——qi8-_

Provide mutually
exclusive access to
shared variable by
surrounding critical
section with P and V
operations on semaphore
s (initially set to 1).

Semaphore invariant
creates a forbidden region
that encloses unsafe
region and is never
touched by any trajectory.

Thread 1

15-213, F'02

Sharing With POSIX Semaphores

/*

/* Initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */

if (sem_init(sem, pshared, value) < 0)
unix_error("Sem init");

}

/* P operation on semaphore sem */
void P(sem t *sem) {
if (sem_wait(sem))
unix_error ("P") ;

}

/* V operation on semaphore sem */
void V(sem t *sem) {
if (sem post(sem))
unix error("V");

void Sem init(sem_t *sem, int pshared, unsigned int value) {

—19 -

}

goodcnt.c - properly sync’d

counter program */
#include "csapp.h"
#define NITERS 10000000

unsigned int cnt; /* counter */
sem_t sem;

/* semaphore */

int main() {

pthread_t tidl, tid2;
Sem_init(&sem, 0, 1); /* sem=1 */

/* create 2 threads and wait */

if (cnt '= (unsigned)NITERS*2)
printf ("BOOM! cnt=%d\n", cnt);
else
printf ("OK cnt=%d\n", cnt);
exit(0) ;

15-213, F'02

—20 —

/* thread routine */
void *count(void *arg)
{

int i;

for (i=0; i<NITERS; i++) {
P(&sem) ;
cnt++;
V(&sem) ;

}

return NULL;

15-213, F'02

Signaling With Semaphores

shared
buffer

consumer
thread

A 4

Common synchronization pattern:

m Producer waits for slot, inserts item in buffer, and “signals” consumer.

m Consumer waits for item, removes it from buffer, and “signals”
producer.
e “signals” in this context has nothing to do with Unix signals

Examples

m Multimedia processing:
o Producer creates MPEG video frames, consumer renders the frames

= Event-driven graphical user interfaces
e Producer detects mouse clicks, mouse movements, and keyboard hits and

inserts corresponding events in buffer.
e Consumer retrieves events from buffer and paints the display.
21— 15-213, F'02

Producer-Consumer (cont)

Initially: empty =1, full = 0.

/* producer thread */ /* consumer thread */
void *producer (void *arg) { void *consumer (void *arg) {
int i, item; int i, item;

for (i=0; i<NITERS; i++) {
/* produce item */

for (i=0; i<NITERS; i++) {
/* read item from buf */

item = i; P (&shared. full) ;
printf ("produced %d\n", item = shared.buf;
item) ; V (&shared.empty) ;

/* write item to buf */
P (&shared.empty) ;

/* consume item */
printf ("consumed %d\n",

shared.buf = item; item) ;
V (&shared. full) ; }
} return NULL;
return NULL; }

}

— 23— 15-213, F'02

Producer-Consumer on a Buffer
That Holds One Iltem

/* bufl.c - producer-consumer int main() {
on l-element buffer */ pthread_t tid_producer;
#include “csapp.h” pthread_t tid_consumer;

#define NITERS 5 /* initialize the semaphores */
Sem_init (&shared.empty, 0, 1);

void *producer (void *arg) ; Sem_init (&shared.full, 0, 0);
void *consumer (void *arg);
/* create threads and wait */

struct { Pthread create(&tid producer, NULL,
int buf; /* shared var */ producer, NULL) ;
sem t full; /* sems */ Pthread create(&tid_consumer, NULL,
sem t empty; consumer, NULL) ;

} shared; Pthread join(tid_producer, NULL) ;

Pthread join(tid_consumer, NULL);

exit(0);

—-22- 15-213, F'02

Thread Safety

Functions called from a thread must be thread-safe.

We identify four (non-disjoint) classes of thread-unsafe
functions:
m Class 1: Failing to protect shared variables.
m Class 2: Relying on persistent state across invocations.
m Class 3: Returning a pointer to a static variable.
m Class 4: Calling thread-unsafe functions.

_o4— 15-213, F'02

Thread-Unsafe Functions Thread-Unsafe Functions (cont)

Class 2: Relying on persistent state across multiple
function invocations.

= Random number generator relies on static state

Class 1: Failing to protect shared variables.
m Fix: Use P and V semaphore operations.

m Issue: Synchronization operations will slow down code. = Fix: Rewrite function so that caller passes in all necessary
m Example: goodent.c state.

/* rand - return pseudo-random integer on 0..32767 */
int rand(void)
{
static unsigned int next = 1;
next = next*1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}

/* srand - set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

—-25-— 15-213, F'02 —-26— 15-213, F'02
Thread-Unsafe Functions (cont) Thread-Unsafe Functions
Class 3: Returning a ptr to struct hostent
a static variable. rgethosthynane (char nane) Class 4: Calling thread-unsafe functions.
. . static struct hostent h; = Calling one thread-unsafe function makes an entire function
lees' <contact DNS and fill in h> thread-unsafe.
= 1. Rewrite code so caller) ol O

passes pointer to struct.
» Issue: Requires

m Fix: Modify the function so it calls only thread-safe functions

hostp = Malloc(...));

Changes in caller gethostbyname r(name, hostp);
and callee.
m 2. Lock-and-copy
» Issue: Requires only struct hostent
. . *gethostbyname ts(char *p)
simple changes in (-
caller (and none in struct hostent *q = Malloc(...);
callee) P(s&mutex) ; /* lock */
» However, caller must p = gethostbyname (name) ;
free memory. *q = *p; /* copy */
V (&mutex) ;
return q;
}

—-27 - T —-28 - 15-213, F'02

Reentrant Functions

A function is reentrant iff it accesses NO shared variables when
called from multiple threads.

= Reentrant functions are a proper subset of the set of thread-safe
functions.

All functions

Thread-safe
functions

Thread-unsafe

Reentrant functions

functions

m NOTE: The fixes to Class 2 and 3 thread-unsafe functions require
modifying the function to make it reentrant.

—29— 15-213, F'02

Races

A race occurs when the correctness of the program
depends on one thread reaching point x before another
thread reaches point y.

/* a threaded program with a race */
int main() {
pthread_t tid[N];
int i;
for (i = 0; 1 < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
exit(0) ;
}

/* thread routine */

void *thread(void *vargp) {
int myid = *((int *)vargp);
printf ("Hello from thread %d\n", myid);
return NULL;

—31— } 15-213, F'02

Thread-Safe Library Functions

All functions in the Standard C Library (at the back of
your K&R text) are thread-safe.
m Examples: malloc, free, printf, scanf

Most Unix system calls are thread-safe, with a few

exceptions:
Thread-unsafe function Class Reentrant version
asctime 3 asctime r
ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)
localtime 3 localtime r
rand 2 rand_r
-30- 15-213, F02

Deadlock

Locking introduces the
potential for deadlock:
v(s) 4 deadlock w?iting for a condition that
LR state will never be true.

region for s

Thread 2

v | Any trajectory that enters

r the deadlock region will
eventually reach the
P(s) deadlock state, waiting for

; L| either s or t to become
ideadlock| forbidden nonzero.

! region region for t
P(t) L.

Other trajectories luck out
and skirt the deadlock
region.

st) P(It) V(Is) V(‘t) Thread 1 Unfortunate fact: deadlock

- is often non-deterministic.
Initially, s=t=1

—32- 15-213, F'02

Threads Summary

Threads provide another mechanism for writing
concurrent programs.

Threads are growing in popularity
m Somewhat cheaper than processes.
m Easy to share data between threads.

However, the ease of sharing has a cost:
m Easy to introduce subtle synchronization errors.
m Tread carefully with threads!

For more info:
m D. Butenhof, “Programming with Posix Threads”, Addison-
Wesley, 1997.

33— 15-213, F'02

