
P6/Linux Memory System
Oct. 31, 2002

P6/Linux Memory System
Oct. 31, 2002

TopicsTopics

! P6 address translation

! Linux memory management

! Linux page fault handling

! memory mapping

class20.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Intel P6Intel P6
Internal Designation for Successor to PentiumInternal Designation for Successor to Pentium

! Which had internal designation P5

Fundamentally Different from PentiumFundamentally Different from Pentium

! Out-of-order, superscalar operation

! Designed to handle server applications

" Requires high performance memory system

Resulting ProcessorsResulting Processors

! PentiumPro (1996)

! Pentium II (1997)

" Incorporated MMX instructions

» special instructions for parallel processing

" L2 cache on same chip

! Pentium III (1999)

" Incorporated Streaming SIMD Extensions

» More instructions for parallel processing

– 3 – 15-213, F’02

P6 Memory SystemP6 Memory System

bus interface unit

DRAM

external
system bus

(e.g. PCI)

instruction

 fetch unit

L1

i-cache

L2

cache

cache bus

L1

d-cache

inst

TLB

data

TLB

processor package

 32 bit address space 32 bit address space

 4 KB page size 4 KB page size

 L1, L2, and L1, L2, and TLBsTLBs

! 4-way set
associative

 inst TLB inst TLB

! 32 entries

! 8 sets

 data TLB data TLB

! 64 entries

! 16 sets

 L1 i-cache and d-cache L1 i-cache and d-cache

! 16 KB

! 32 B line size

! 128 sets

 L2 cache L2 cache

! unified

! 128 KB -- 2 MB

– 4 – 15-213, F’02

Review of AbbreviationsReview of Abbreviations

Symbols:Symbols:

! Components of the virtual address (VA)

" TLBI: TLB index

" TLBT: TLB tag

" VPO: virtual page offset

" VPN: virtual page number

! Components of the physical address (PA)

" PPO: physical page offset (same as VPO)

" PPN: physical page number

" CO: byte offset within cache line

" CI: cache index

" CT: cache tag

– 5 – 15-213, F’02

Overview of P6 Address TranslationOverview of P6 Address Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

– 6 – 15-213, F’02

P6 2-level Page Table StructureP6 2-level Page Table Structure

Page directoryPage directory

! 1024 4-byte page directory

entries (PDEs) that point to page

tables

! one page directory per process.

! page directory must be in

memory when its process is

running

! always pointed to by PDBR

Page tables:Page tables:

! 1024 4-byte page table entries

(PTEs) that point to pages.

! page tables can be paged in and

out.

page
directory

...

Up to
1024
page

tables

1024

PTEs

1024

PTEs

1024

PTEs

...

1024

PDEs

– 7 – 15-213, F’02

P6 Page Directory Entry (PDE)P6 Page Directory Entry (PDE)

Page table physical base addr Avail G PS A CD WT U/S R/W P=1

Page table physical base address: 20 most significant bits of physical
page table address (forces page tables to be 4KB aligned)

Avail: These bits available for system programmers

G: global page (don’t evict from TLB on task switch)

PS: page size 4K (0) or 4M (1)

A: accessed (set by MMU on reads and writes, cleared by software)

CD: cache disabled (1) or enabled (0)

WT: write-through or write-back cache policy for this page table

U/S: user or supervisor mode access

R/W: read-only or read-write access

P: page table is present in memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page table location in secondary storage) P=0

31 01

– 8 – 15-213, F’02

P6 Page Table Entry (PTE)P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page
address (forces pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storage) P=0

31 01

– 9 – 15-213, F’02

How P6 Page Tables Map Virtual
Addresses to Physical Ones
How P6 Page Tables Map Virtual
Addresses to Physical Ones

PDE

PDBR
physical address

of page table base

(if P=1)

physical

address

of page base

(if P=1)

physical address

of page directory

word offset into

page directory

word offset into

page table

page directory page table

VPN1

10

VPO

10 12

VPN2 Virtual address

PTE

PPN PPO

20 12

Physical address

word offset into

physical and virtual

page

– 10 – 15-213, F’02

Representation of Virtual Address
Space
Representation of Virtual Address
Space

Simplified ExampleSimplified Example

! 16 page virtual address space

FlagsFlags

! P: Is entry in physical memory?

! M: Has this part of VA space

been mapped?

Page Directory

PT 3

P=1, M=1

P=1, M=1

P=0, M=0

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=0, M=1

P=0, M=1

P=0, M=0

P=0, M=0

•
•
•
•

PT 2

PT 0

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Mem Addr

Disk Addr

In Mem

On Disk

Unmapped

– 11 – 15-213, F’02

P6 TLB TranslationP6 TLB Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

– 12 – 15-213, F’02

P6 TLBP6 TLB

TLB entry (not all documented, so this is speculative):TLB entry (not all documented, so this is speculative):

! V: indicates a valid (1) or invalid (0) TLB entry

! PD: is this entry a PDE (1) or a PTE (0)?

! tag: disambiguates entries cached in the same set

! PDE/PTE: page directory or page table entry

"" Structure of the data TLB:Structure of the data TLB:

! 16 sets, 4 entries/set

PDE/PTE Tag PD V

1 11632

entry entry entry entry

entry entry entry entry

entry entry entry entry

entry entry entry entry

...

set 0
set 1
set 2

set 15

– 13 – 15-213, F’02

Translating with the P6 TLBTranslating with the P6 TLB

1. Partition VPN into1. Partition VPN into
TLBT and TLBI.TLBT and TLBI.

2. Is the PTE for VPN2. Is the PTE for VPN
cached in set TLBI?cached in set TLBI?

! 3. Yes: then
build physical

address.

4. 4. NoNo: then read PTE (and: then read PTE (and
PDE if not cached)PDE if not cached)
from memory andfrom memory and
build physicalbuild physical
address.address.

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address

PDE PTE

...
TLB

miss

TLB

hit

page table translation

PPN PPO

20 12

physical
address

1 2

3

4

– 14 – 15-213, F’02

P6 page table
translation
P6 page table
translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

– 15 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/1)
Translating with the P6 Page Tables
(case 1/1)

Case 1/1: pageCase 1/1: page
table and pagetable and page
present.present.

MMU Action:MMU Action:

! MMU builds

physical

address and

fetches data

word.

"" OS actionOS action

! none

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data
page

data

Page
directory

Page
table

Mem

Disk

– 16 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/0)
Translating with the P6 Page Tables
(case 1/0) Case 1/0: page tableCase 1/0: page table

present but pagepresent but page
missing.missing.

MMU Action:MMU Action:

! page fault exception

! handler receives the

following args:

" VA that caused

fault

" fault caused by

non-present page

or page-level

protection violation

" read/write

" user/supervisor

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE

Page
directory

Page
table

Mem

Disk

Data
page

data

p=0

– 17 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/0, cont)
Translating with the P6 Page Tables
(case 1/0, cont) OS Action:OS Action:

! Check for a legal

virtual address.

! Read PTE through

PDE.

! Find free physical

page (swapping out

current page if

necessary)

! Read virtual page

from disk and copy to

virtual page

! Restart faulting

instruction by

returning from

exception handler.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE p=1

Page
directory

Page
table

Data
page

data

PPN PPO

20 12

Mem

Disk

– 18 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/1)
Translating with the P6 Page Tables
(case 0/1)

Case 0/1: page tableCase 0/1: page table
missing but pagemissing but page
present.present.

IntroducesIntroduces
consistency issue.consistency issue.
! potentially every

page out requires
update of disk page
table.

Linux disallows thisLinux disallows this
! if a page table is

swapped out, then
swap out its data
pages too.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE p=1

Page
directory

Page
table

Mem

Disk

Data
page

data

– 19 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/0)
Translating with the P6 Page Tables
(case 0/0)

Case 0/0: pageCase 0/0: page
table and pagetable and page
missing.missing.

MMU Action:MMU Action:

! page fault

exception

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE

Page
directory

Page
table

Mem

Disk

Data
page

datap=0

– 20 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/0, cont)
Translating with the P6 Page Tables
(case 0/0, cont)

OS action:OS action:

! swap in page

table.

! restart faulting

instruction by

returning from

handler.

Like case 0/1 fromLike case 0/1 from
here on.here on.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE

Page
directory

Page
table

Mem

Disk

Data
page

data

p=0

– 21 – 15-213, F’02

P6 L1 Cache AccessP6 L1 Cache Access
CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

– 22 – 15-213, F’02

L1 Cache AccessL1 Cache Access

Partition physicalPartition physical
address into CO, CI,address into CO, CI,
and CT.and CT.

Use CT to determine ifUse CT to determine if
line containing wordline containing word
at address PA isat address PA is
cached in set CI.cached in set CI.

If no: check L2.If no: check L2.

If yes: extract word atIf yes: extract word at
byte offset CO andbyte offset CO and
return to processor.return to processor.

physical

address (PA)

data

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

– 23 – 15-213, F’02

Speeding Up L1 AccessSpeeding Up L1 Access

ObservationObservation

! Bits that determine CI identical in virtual and physical address

! Can index into cache while address translation taking place

! Then check with CT from physical address

! “Virtually indexed, physically tagged”

! Cache carefully sized to make this possible

Physical address (PA)

CT CO

20 5

CI

7

virtual

address (VA)
VPN VPO

20 12

PPOPPN

Addr.

Trans.

No

Change CI

Tag Check

– 24 – 15-213, F’02

vm_next

vm_next

Linux Organizes VM as Collection of
“Areas”
Linux Organizes VM as Collection of
“Areas”
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

! pgd:

" page directory address

! vm_prot:

" read/write permissions

for this area

! vm_flags

" shared with other

processes or private to

this process

vm_flags

vm_flags

vm_flags

– 25 – 15-213, F’02

Linux Page Fault HandlingLinux Page Fault Handling

vm_area_struct

vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

Is the VA legal?Is the VA legal?

! i.e. is it in an area

defined by a

vm_area_struct?

! if not then signal

segmentation

violation (e.g. (1))

Is the operation legal?Is the operation legal?

! i.e., can the process

read/write this area?

! if not then signal

protection violation

(e.g., (2))

If OK, handle faultIf OK, handle fault

! e.g., (3)

write

read

read
1

2

3

– 26 – 15-213, F’02

Memory MappingMemory Mapping

Creation of new VM Creation of new VM areaarea done via done via ““memory mappingmemory mapping””

! create new vm_area_struct and page tables for area

! area can be backed by (i.e., get its initial values from) :

" regular file on disk (e.g., an executable object file)

» initial page bytes come from a section of a file

" nothing (e.g., bss)

» initial page bytes are zeros

! dirty pages are swapped back and forth between a special

swap file.

Key pointKey point: no virtual pages are copied into physical: no virtual pages are copied into physical
memory until they are referenced!memory until they are referenced!

! known as “demand paging”

! crucial for time and space efficiency

– 27 – 15-213, F’02

User-Level Memory MappingUser-Level Memory Mapping

void *void *mmapmmap(void *start, (void *start, int lenint len,,

 int prot int prot, , int int flags, flags, int fdint fd, , int int offsetoffset))

! map len bytes starting at offset offset of the file specified

by file description fd, preferably at address start (usually 0

for don’t care).

" prot: MAP_READ, MAP_WRITE

" flags: MAP_PRIVATE, MAP_SHARED

! return a pointer to the mapped area.

! Example: fast file copy

" useful for applications like Web servers that need to quickly

copy files.

" mmap allows file transfers without copying into user space.

– 28 – 15-213, F’02

mmap() Example: Fast File Copymmap() Example: Fast File Copy
#include <#include <unistdunistd.h>.h>
#include <sys/#include <sys/mmanmman.h>.h>
#include <sys/types.h>#include <sys/types.h>
#include <sys/stat.h>#include <sys/stat.h>
#include <#include <fcntlfcntl.h>.h>

/*/*
 * * mmapmmap.c - a program that uses .c - a program that uses mmapmmap
 * to copy itself to * to copy itself to stdoutstdout
 */ */

intint main() { main() {
 struct struct stat stat; stat stat;
 int int i, i, fd fd, size;, size;
 char * char *bufpbufp;;

 /* open the file & get its size*/ /* open the file & get its size*/
 fd fd = open("./ = open("./mmapmmap.c", O_RDONLY);.c", O_RDONLY);
 fstat fstat((fdfd, &stat);, &stat);
 size = stat. size = stat.stst_size;_size;
 /* map the file to a new VM area */ /* map the file to a new VM area */
 bufp bufp = = mmap mmap(0, size, PROT_READ,(0, size, PROT_READ,
 MAP_PRIVATE, MAP_PRIVATE, fd fd, 0);, 0);

 /* write the VM area to /* write the VM area to stdout stdout */ */
 write(1, write(1, bufp bufp, size);, size);
}}

– 29 – 15-213, F’02

Exec() RevisitedExec() Revisited

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp
process

 VM

brk

0xc0

physical memorysame
for each
process

process-specific data
structures

(page tables,

task and mm structs)

kernel

VM

To run a new program p inTo run a new program p in
the current processthe current process
using using exec()exec()::

! free vm_area_struct’s and
page tables for old areas.

! create new
vm_area_struct’s and page
tables for new areas.
"stack, bss, data, text,

shared libs.

"text and data backed by
ELF executable object file.

"bss and stack initialized to
zero.

! set PC to entry point in
.text
"Linux will swap in code and

data pages as needed.

.data

.text

p

demand-zero

demand-zero

libc.so

.data

.text

– 30 – 15-213, F’02

Fork() RevisitedFork() Revisited
To create a new process using To create a new process using fork()fork()::

! make copies of the old process’s mm_struct,

vm_area_struct’s, and page tables.

" at this point the two processes are sharing all of their pages.

" How to get separate spaces without copying all the virtual

pages from one space to another?

» “copy on write” technique.

! copy-on-write

" make pages of writeable areas read-only

" flag vm_area_struct’s for these areas as private “copy-on-

write”.

" writes by either process to these pages will cause page faults.

» fault handler recognizes copy-on-write, makes a copy of the
page, and restores write permissions.

! Net result:

" copies are deferred until absolutely necessary (i.e., when one of

the processes tries to modify a shared page).

– 31 – 15-213, F’02

Memory System SummaryMemory System Summary
Cache MemoryCache Memory

! Purely a speed-up technique

! Behavior invisible to application programmer and OS

! Implemented totally in hardware

Virtual MemoryVirtual Memory

! Supports many OS-related functions

" Process creation

» Initial

» Forking children

" Task switching

" Protection

! Combination of hardware & software implementation

" Software management of tables, allocations

" Hardware access of tables

" Hardware caching of table entries (TLB)

