15-213

“The course that gives CMU its Zip!”

Virtual Memory
Oct. 29, 2002

Topics
m Motivations for VM
m Address translation
m Accelerating translation with TLBs

classl9.ppt

Motivation #1: DRAM a “Cache” for

Pull§a dress space is quite large:
m 32-bit addresses: ~4,000,000,000 (4 billion) bytes
= 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)
bytes
Disk storage is ~300X cheaper than DRAM storage
= 80 GB of DRAM: ~ $33,000
= 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner,

the bulk of the data must be stored on disk

1GB: ~$200 80 GB: ~$110

4 MB: ~$500 <y
<«—»| DRAM

_3- 15-213, F'02

Motivations for Virtual Memory

Use Physical DRAM as a Cache for the Disk
m Address space of a process can exceed physical memory size
= Sum of address spaces of multiple processes can exceed
physical memory
Simplify Memory Management
= Multiple processes resident in main memory.
e Each process with its own address space
= Only “active” code and data is actually in memory
o Allocate more memory to process as needed.

Provide Protection

m One process can’t interfere with another.
® because they operate in different address spaces.
m User process cannot access privileged information

o different sections of address spaces have different permissions.
o 15-213, F'02

Levels in Memory Hierarchy

cache virtual memory
+—>
c
CPU 8B a 32B Memory 4 KB @
b
e
Register Cache Memory Disk Memory
size: 32B 32 KB-4MB 1024 MB 100 GB
speed: 1ns 2ns 30 ns 8 ms
$/Mbyte: $125/MB $0.20/MB $0.001/MB
line size: 8B 32B 4 KB

larger, slower, cheaper

>

_4- 15-213, F'02

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM

m Access latencies:
e DRAM ~10X slower than SRAM
® Disk ~100,000X slower than DRAM
m Importance of exploiting spatial locality:
e First byte is ~100,000X slower than successive bytes on disk
» vs. ~4X improvement for page-mode vs. regular accesses to
DRAM

m Bottom line:
® Design decisions made for DRAM caches driven by enormous cost

of misses

15-213, F'02

Locating an Object in a “Cache”

SRAM Cache

m Tag stored with cache line

m Maps from cache block to memory blocks
® From cached to uncached form
e Save a few bits by only storing tag

= No tag for block not in cache

m Hardware retrieves information
e can quickly match against multiple tags

“Cache”
Tag Data
Object Name O/I D_| 243 |
S L N | S A,
N-1 J [105 |

15-213, F'02

Impact of Properties on Design

If DRAM was to be organized similar to an SRAM cache, how would
we set the following design parameters?

m Line size?
e Large, since disk better at transferring large blocks

m Associativity?
o High, to mimimize miss rate

m Write through or write back?
e Write back, since can’t afford to perform small writes to disk
What would the impact of these choices be on:

= miss rate
o Extremely low. << 1%

= hit time
e Must match cache/DRAM performance

= miss latency
e Very high. ~20ms

= tag storage overhead

o Low, relative to block size
—6-— 15-213, F'02

Locating an Object in “Cache” (cont.)

DRAM Cache
m Each allocated page of virtual memory has entry in page table
= Mapping from virtual pages to physical pages
® From uncached form to cached form

m Page table entry even if page not in memory
e Specifies disk address
e Only way to indicate where to find page

m OS retrieves information
Page Table “Cache”
Location

Object Name D: Il

e A ¥

15-213, F'02

A System with Physical Memory Only

Examples:
= most Cray machines, early PCs, nearly all embedded
systems, etc. Memory
. 0:
AI;h sical 1
r

>

\‘

N-11

m Addresses generated by the CPU correspond directly to bytes in
physical memory
-9- 15-213, F'02

Page Faults (like “Cache Misses”)

What if an object is on disk rather than in memory?
m Page table entry indicates virtual address not in memory

m OS exception handler invoked to move data from disk into
memory
e current process suspends, others can resume
e OS has full control over placement, etc.

Before fault Memory After fault
Memory
Virtual Page Tabee . Page Table
Addresses Physical Virtual Physical

AddreSSff R 4 Addresses

| JAddresses|

11 - 15-213, F'02

A System with Virtual Memory

Examples: Memory
m workstations, servers, modern PCs, etc. 0:
Page Table 13
Virtual ;
Addresses 0 AI;Ig;s:cal
B Py
o
=< B . .

==

m Address Translation: Hardware converts virtual addresses to

physical addresses via OS-managed lookup table (page table)
—10 - 15-213, F'02

Servicing a Page Fault

(1) Initiate Block Read

Processor Signals Controller
= Read block of length P ng"
[Reg |
starting at disk address X and I(DB())nF;ead
store starting at memory ‘
address Y Cache
Read Occurs \
= Direct Memory Access (DMA) l eTroTy=He-ays |
= Under control of /O controller ‘ (2) DMA } v
Transfer |
1/ O Controller Signals Memory cofftroller

Completion 'CL

= Interrupt processor e

m OS resumes suspended -_—
process

12— 15-213, F'02

Motivation #2: Memory Management Solution: Separate Virt. Addr. Spaces

Multiple processes can reside in physical memory. = Virtual and physical address spaces divided into equal-sized
blocks
How do we resolve address conflicts? e blocks are called “pages” (both virtual and physical)
= what if two processes access something at the same = Each process has its own virtual address space
address?

® operating system controls how virtual pages as assigned to

kernel virtual memory mu::'f(:g(::"ism'e to physical memory
% stack
%oeSp —P * | . 0 .
Virtual 0 Address Translation Physical
Memory m;pe dregion Address VP 1 »| PP2 Address
Linux/x86 forshared libraries Space for VP2 (S[?Fa{,(;?\ﬂ)
process A Process 1: Y
€= the “brk” pt -
memory runtime heap (via malloc) ¢ rert v | L2y fﬁo?a,r;e::é:;ﬂy
H —— irtual 0|
Image u_nl_n.ltl'tallzed data (.bss) Address L:1,
initialized data (.data) s f VP 2 PP 10
program text (.text) pace Or.
forbidden Process2: = [] M-1
-13- N 15-213, F'02 —14- 15-213, F'02
Contrast: Macintosh Memory Model Macintosh Memory Management

MAC OS 1-9

. . Allocation / Deallocation
m Does not use traditional virtual memory

P1 Pointer Table Shared Address Space = Similar to free-list management of malloc/free
Compaction
Process P1 A i . . i .
P = Can move any object and just update the (unique) pointer in
./i pointer table
B P1 Pointer Table Shared Address Space
“Handles” P2 Pointer Ta c B
Process P1 »
Process P2 " ./ -
— D .Z/ A
o— “Handles
E P2 PointegTable c
All program objects accessed through “handles” Process P21 .
= Indirect reference through pointer table .ﬁ o D
m Objects stored in shared global address space " E
—15— 15-213, F’02 -16 — 15-213, F'02

Mac vs. VM-Based Memory Mgmt

Allocating, deallocating, and moving memory:
m can be accomplished by both techniques

Block sizes:

m Mac: variable-sized
® may be very small or very large

m VM: fixed-size
® size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:
m Mac: contiguous allocation is required
m VM: can map contiguous range of virtual addresses to
disjoint ranges of physical addresses

Protection

m Mac: “wild write” by one process can corrupt another’s data

17 - 15-213, F'02

Motivation #3: Protection

Page table entry contains access rights information
= hardware enforces this protection (trap into OS if violation

occurs) Page Tables Memory
Read? Write? Physical Addr 0:
VPO Yes || No |[PP9 }\ 1:
Process i: [WP 1 ves |[Yes |[PP4 I
vP2f No |[No [xxxxxxx] g

Read? Write? Physical Addr

VPO Yes || Yes || PP6 |

\\

Process j: |WP1 Yes |[no || PP9] N-13

VP2{ No || No |[xxxxxxx |

19— 15-213, F'02

MAC OS X

“Modern” Operating System

m Virtual memory with protection
m Preemptive multitasking

e Other versions of MAC OS require processes to voluntarily

relinquish control

Based on MACH OS

—18 —

VM Address Translation

m Developed at CMU in late 1980’s

Virtual Address Space

= V={0,1, .., N-1}

Physical Address Space

s P={0,1,..., M-1}
s M<N

Address Translation

—20 -

= MAP: V— P U {J}
m For virtual address a:

15-213, F'02

® MAP(a) = a’ if data at virtual address a at physical address a’

inP

o MAP(a) = J if data at virtual address a not in physical memory

» Either invalid or stored on disk

15-213, F'02

VM Address Translation: Hit

Processor

Hardware | | — Mai
Addr Trans M ain
a Mechanism ~| Memory

/ | a' N
virtual address part of the physical address

on-chip
memory mgmt unit (MMU)

21— 15-213, F'02

VM Address Translation

Parameters
m P = 2r = page size (bytes).
m N = 2" = Virtual address limit
m M = 2™ = Physical address limit
n—1 p p-1 0
’ virtual page number | page offset virtual address

A4

address translation

m—1 l p p-1 0
’ physical page number I page offset physical address

Page offset bits don’t change as a result of translation

—23— 15-213, F'02

VM Address Translation: Miss

page fault
fault
[Processor] f handier
(%]
> A'ﬁf' -‘|’-v|-aa:-,es Main > | Secondary
a Mechanism .» Memory || memory
/ \ 2
\ .
virtual address part of I:‘the physical address %?sﬁf;:sr {gf
memory mgmt unit (MMU) (only if miss)
mEes 15-213, F02
Page Tables
Virtual Page Memory resident
Number page table
(physical page i
— Valig or disk address) Physical Memory
1 [
1 o
0 e
1 [
— 1 o >
1 o N
0 LY \
1 Ca <
0 e 1 Disk Storage
: L —< AN (swap file or
NN regular file system file)
NN
SN —
N N
\\ AN
N N

_2o4— 15-213, F'02

Address Translation via Page Table

’ page table base register ‘ virtual address

n-1 p p-1 0
VPN acts ’ virtual page number (VPN) | page offset ‘
as
table inde

valid access physical page number (PPN

L
—

if valid=0

then page

not in memory m-1 v p p-1 v 0

physical page number (PPN)| page offset
physical address

— 25— 15-213, F'02

Page Table Operation

Computing Physical Address
m Page Table Entry (PTE) provides information about page
o if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address
o if (valid bit = 0) then the page is on disk
» Page fault

page table base register virtual address
n-1 p p-1 0
VPN acts ‘ virtual page number (VPN) H page offset
as
table inde valid physical page ber (PPN
°
if valid=0
then page
not in memory m-1 p p-1 0

physical page number (PPN)H page offset

—27- physical address 15-213, F'02

Page Table Operation

Translation

m Separate (set of) page table(s) per process
= VPN forms index into page table (points to a page table entry)

— 26—

—28 —

page table base register

virtual address

n-1 p p-1 0
VPN acts ‘ virtual page number (VPN) H page offset
as
table inde valid access physical page number (PPN|
if valid=0
then page
not in memory m-1 p p-1 A 0

physical page number (PPN)H page offset

physical address

Page Table Operation

Checking Protection

m Access rights field indicate allowable access
® e.g., read-only, read-write, execute-only
e typically support multiple protection modes (e.g., kernel vs. user)

m Protection violation fault if user doesn’t have necessary

permission

page table base register

VPN acts

virtual address
n-1 p p-1

‘ virtual page number (VPN) H page offset

as
table indg; valid physical page ber (PPN
: C

if valid=0
then page
not in memory

—

m-1 p p-i

physical page number (PPN)H page offset

physical address

15-213, F'02

15-213, F'02

Integrating VM and Cache

VA | PA miss

Y
» »

Trans- | Main
CPU lation Cache Memory

| e 1

Most Caches “Physically Addressed”
m Accessed by physical addresses
m Allows multiple processes to have blocks in cache at same time
m Allows multiple processes to share pages

m Cache doesn’t need to be concerned with protection issues
e Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
m But this could involve a memory access itself (of the PTE)
m Of course, page table entries can also become cached

—29— 15-213, F'02

Address Translation with a TLB

n-1 p_p-1 0
[virtual page number | page offset | virtual address)

valid tag physical page nhumber

> TLB

v
0

TLB hit+—J— /

v A, \
[physical address |

index! l byte offset

valid tag data

> Cache

i
cache hit«—(— | v data /

—31- 15-213, F'02

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
= Small hardware cache in MMU
m Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of

pages
hit i
VA | PA miss
oTe |% Main
CPU Lookup Cache Memory
<
miss H hit
Trans-
lation
— data
—-30-— 15-213, F'02

Simple Memory System Example

Addressing
m 14-bit virtual addresses
m 12-bit physical address
m Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lt rrrrrr PP
VPN VPO
(Virtual Page Number)

1 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
(Physical Page Number) (Physical Page Offset)

—32- 15-213, F'02

Simple Memory System Page Table

m Only show first 16 entries

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 ocC - 0
05 16 1 oD 2D 1
06 - 0 0E 11 1
07 - 0 OF oD 1
-33- 15-213, F'02

Simple Memory System Cache

Cache
= 16 lines
m 4-byte line size
= Direct mapped

PPN PPO

Idx Tag | Valid | BO B1 B2 B3 Idx Tag | Valid | BO B1 B2 B3
0 19 1 99 1 23 1 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 1 Cc2 DF 03 F 14 0 - - - -

w
o
|

15-213, F'02

Simple Memory System TLB

TLB
= 16 entries
= 4-way associative

TLBT TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
Set Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
—34 - 15-213, F’02

Address Translation Example #1

Virtual Address 0x03D4

TLBT TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

VPN ___ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:
Physical Address

Offset_ Cl__ CT Hit? _ Byte:

— 36— 15-213, F'02

Address Translation Example #2

Virtual Address 0x0BS8F

TLBT TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

VPN ___ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:
Physical Address

Offset_ Cl__ CT Hit? _ Byte:

—37- 15-213, F'02

Multi-Level Page Tables
. Level 2
Given: Tables
= 4KB (2'?) page size
m 32-bit address space
= 4-byte PTE

Level 1
Problem: Table

= Would need a 4 MB page table!
® 220*4 pytes

Common solution
= multi-level page tables

m e.g., 2-level table (P6)
® Level 1 table: 1024 entries, each of
which points to a Level 2 page table.
® Level 2 table: 1024 entries, each of

o which points to a page 15-213, F'02

Address Translation Example #3

Virtual Address 0x0040

TLBT TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

VPN ___ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:
Physical Address

Offset_ Cl__ CT Hit? _ Byte:

— 38— 15-213, F'02

Main Themes

Programmer’s View

m Large “flat” address space

e Can allocate large blocks of contiguous addresses
m Processor “owns” machine

® Has private address space

e Unaffected by behavior of other processes

System View
m User virtual address space created by mapping to set of
pages

o Need not be contiguous
o Allocated dynamically
o Enforce protection during address translation

= OS manages many processes simultaneously
e Continually switching among processes
e Especially when one must wait for resource

_a0- » E.g., disk I/O to handle page fault 15-213, F02

