15-213

“The course that gives CMU its Zip!”

Code Optimization I:
Machine Independent Optimizations
Sept. 26, 2002

Topics
= Machine-Independent Optimizations
e Code motion

® Reduction in strength
e Common subexpression sharing

m Tuning
e |ldentifying performance bottlenecks

classl0.ppt

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
is written

m Must optimize at multiple levels:
e algorithm, data representations, procedures, and loops

Must understand system to optimize performance
m How programs are compiled and executed

m How to measure program performance and identify
bottlenecks

m How to improve performance without destroying code
modularity and generality

o 15-213, F'02

Optimizing Compilers

Provide efficient mapping of program to machine
m register allocation
m code selection and ordering
m eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiency
m up to programmer to select best overall algorithm

= big-O savings are (often) more important than constant
factors
e but constant factors also matter

Have difficulty overcoming “optimization blockers”
m potential memory aliasing
m potential procedure side-effects

3 15-213, F'02

Limitations of Optimizing Compilers

Operate Under Fundamental Constraint

m Must not cause any change in program behavior under any
possible condition

m Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles

m e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within procedures
m whole-program analysis is too expensive in most cases

Most analysis is based only on static information
m compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative

4 15-213, F'02

Machine-Independent Optimizations

m Optimizations you should do regardless of processor /
compiler

Code Motion

m Reduce frequency with which computation performed
e If it will always produce same result
e Especially moving code out of loop

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
a[n*i + j] = b[]]’

5 15-213, F'02

Compiler-Generated Code Motion

m Most compilers do a good job with array code + simple loop
structures

Code Generated by GCC for (L=0, i <n; ith) {
int ni

for (i = 0; 1 < n; i++) int *p
for (j = 0; j < n; j++) for (j
a[n*i + j] = b[]]’ *p++

n*i;

a+t+ni;

0; j < n; j++)
b[j];

imull $%ebx, %eax # i*n
movl 8 (%ebp) , %edi # a
leal (%edi,%eax,4) ,%edx # p = a+i*n (scaled by 4)
Inner Loop
.L40:
movl 12 (%ebp) ,%edi #
movl (%edi,%ecx,4),%eax #
movl %eax, (%edx) #
#
#
3

b

b+j (scaled by 4)
*p = b[]]

p++ (scaled by 4)
J++

addl $4,%edx
incl %ecx

jl .L40 loop if j<n

-6 - 15-213, F'02

Reduction in Strength

m Replace costly operation with simpler one
m Shift, add instead of multiply or divide
16*x --> x << 4
e Utility machine dependent
® Depends on cost of multiply or divide instruction
® On Pentium Il or lll, integer multiply only requires 4 CPU cycles

m Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[]];

15-213, F'02

Make Use of Registers

m Reading and writing registers much faster than
reading/writing memory

Limitation

m Compiler not always able to determine whether variable can
be held in register

m Possibility of Aliasing
m See example later

-8 - 15-213, F'02

Machine-Independent Opts. (Cont.)

Share Common Subexpressions
m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of
up = val[(i-1)*n
down = wval[(i+l)*n
left = wval[i*n +

right = val[i*n +
sum = up + down + le

i, j */

+ Jl;

+ Jl;

j-11;

j+1];

ft + right;

int inj = i*n +
up = val[inj
down = val[in]
left = wvall[inj
right = val[inj
sum = up + down

+ + 1 + 1«

n];
n];
1];
1];
left + right;

3 multiplications: i*n, (i-1)*n, (i+1)*n

leal -1 (%edx), %ecx
imull %ebx, %ecx
leal 1 (%edx),%eax
imull %ebx, %eax
imull %ebx, %$edx

i-1
(i-1)*n
i+l
(i+1)*n
i*n

1 multiplication: i*n

15-213, F'02

Vector ADT

length 012 length-1
data @ | g e o o
Procedures

vec_ptr new vec(int len)
® Create vector of specified length
int get vec element(vec ptr v, int index, int *dest)
® Retrieve vector element, store at *dest
® Return 0 if out of bounds, 1 if successful
int *get vec start(vec ptr v)
® Return pointer to start of vector data
= Similar to array implementations in Pascal, ML, Java
e E.g., always do bounds checking

—-10 - 15-213, F'02

Optimization Example

void combinel (vec_ptr v, int *dest)
{

int i;

*dest = 0;

int val;
get vec element(v, i, &val);
*dest += wval;
}
}

for (i = 0; i < vec_length(v); i++) {

Procedure

—11 =

m Compute sum of all elements of vector
m Store result at destination location

15-213, F'02

Time Scales

Absolute Time
m Typically use nanoseconds
® 10-° seconds
m Time scale of computer instructions

Clock Cycles
m Most computers controlled by high frequency clock signal
m Typical Range
e 100 MHz
» 108 cycles per second
» Clock period = 10ns
® 2 GHz
» 2 X 10° cycles per second
» Clock period = 0.5ns

m Fish machines: 550 MHz (1.8 ns clock period)
_ 12— 15-213, F’02

13—

Cycles Per Element

m Convenient way to express performance of program that
operators on vectors or lists

m Length=n

m T=CPE*n + Overhead

Cycles

1000

900

800

vsuml

700

Slope = 4.0

600

500

400

e Slope = 3.5

300

/

200

s

100

0
0

50

100 150
Elements

200

15-213, F'02

Optimization Example

void combinel (vec_ptr v, int *dest)

{

int i;

*dest = 0;

for (1 = 0; 1 < vec_length(v); i++) {
int val;

get vec element(v, i, &val);
*dest += wval;

}
}

Procedure
m Compute sum of all elements of integer vector
m Store result at destination location
m Vector data structure and operations defined via abstract data
type
Pentium I/lll Performance: Clock Cycles / Element
_14- m42.06 (Compiled -g) 31.25 (Compiled -02) 15-213, F102

Understanding Loop

{

void combinel-goto(vec ptr v, int *dest)

int i = 0;
int val;
*dest = 0;
if (i >= vec_length(v))
goto done; 1 iteration
loop: ~

get vec element(v, i, &val);
*dest += wval;

i++; ~
if (i < vec length(v))
goto loop _
done:
}
Inefficiency

— 15—

m Procedure vec_length called every iteration
m Even though result always the same

15-213, F'02

Move vec length Call Out of Loop

void combine2 (vec ptr v, int *dest)

{

int i;

int length = vec length(v);

*dest = 0;

for (1 = 0; i < length; i++) {
int wval;

get vec element(v, i, &val);
*dest += wval;

}
}

Optimization
= Move call to vec_length out of inner loop

e Value does not change from one iteration to next
e Code motion

m CPE: 20.66 (Compiled -02)
® vec length requires only constant time, but significant overhead

_ 16— 15-213, F'02

Procedure to Convert String to Lower Case

—17 -

Code Motion Example #2

void lower (char *s)
{
int i;
for (1 =

0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z"')
s[i] -= ('A' -

'al);

m Extracted from 213 lab submissions, Fall, 1998

15-213, F'02

Lower Case Conversion Performance

= Time quadruples when double string length
m Quadratic performance

lower1
1000
100
8 10
5
9 1
Q
0 0.1
2 0.01
&)
0.001 . I
0.0001 -—- :
512 1024 2048 4096 8192 16384 32768 65536 131072 262144
String Length

-18 - 15-213, F’02

Convert Loop To Goto Form

void lower (char *s)
{
int 1 = 0;
if (i >= strlen(s))
goto done;

loop:
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A'" - "a');
i++;
if (1 < strlen(s))
goto loop;
done:

}

m strlen executed every iteration

m strlen linear in length of string
® Must scan string until finds '\0'

m Overall performance is quadratic
—19 —

15-213, F'02

— 20—

Improving Performance

void lower (char *s)

{
int i;
int len = strlen(s);
for (i = 0; 1 < len; i++)

s[i] -= ('A' - 'a');

if (s[i] >= 'A' && s[i] <= 'Z")

m Move call to strlen outside of loop

m Since result does not change from one iteration to another

m Form of code motion

15-213, F'02

Lower Case Conversion Performance

m Time doubles when double string length
m Linear performance

1000
100

10
1

0.1

0.01
0.001
0.0001
0.00001
0.000001-

CPU Seconds

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

B lowerl B lower?2

_oq 15-213, F’02

Optimization Blocker: Procedure Calls

Why couldn’t the compiler move vec len or strlen out of
the inner loop?

m Procedure may have side effects
e Alters global state each time called

m Function may not return same value for given arguments
® Depends on other parts of global state
® Procedure lower could interact with strlen

Why doesn’t compiler look at code for vec len or strlen?

m Linker may overload with different version
® Unless declared static

m Interprocedural optimization is not used extensively due to cost

Warning:
m Compiler treats procedure call as a black box

m Weak optimizations in and around them
—_92o_ 15-213, F'02

Reduction in Strength

void combine3(vec ptr v, int *dest)
{
int i;
int length = vec length(v);
int *data = get vec_ start(v);
*dest = 0;
for (i = 0; 1 < length; i++) {
*dest += data[i];

}

Optimization
m Avoid procedure call to retrieve each vector element
e Get pointer to start of array before loop

e Within loop just do pointer reference
e Not as clean in terms of data abstraction

m CPE: 6.00 (Compiled -02)
e Procedure calls are expensive!
e Bounds checking is expensive

— 23— 15-213, F'02

Eliminate Unneeded Memory Refs

void combine4 (vec_ptr v, int *dest)

{

int i;

int length = vec length(v);

int *data = get vec_ start(v);

int sum = 0;

for (i = 0; 1 < length; i++)
sum += datal[i];

*dest = sum;

}

Optimization
m Don’t need to store in destination until end
m Local variable sum held in register

m Avoids 1 memory read, 1 memory write per cycle

m CPE: 2.00 (Compiled -02)
e Memory references are expensive!

— 24 — 15-213, F'02

Detecting Unneeded Memory Refs.

Combine3 Combine4d

.L18:
movl (%ecx,%edx,4),%eax
addl %eax, (%5edi
incl %edx
cmpl %esi,%edx
31 .L18

.L24:

addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
j1 .L24

Performance

m Combine3
®5 instructions in 6 clock cycles
® addl must read and write memory

m Combine4
e®4 instructions in 2 clock cycles

_ 25—

15-213, F'02

Optimization Blocker: Memory Aliasing

Aliasing

m Two different memory references specify single location
Example

mv: [3, 2, 17]

®m combine3 (v, get vec start(v)+2) -=> 7

®m combine4 (v, get vec start(v)+2) -=> "

Observations

m Easy to have happen in C
e Since allowed to do address arithmetic
e Direct access to storage structures

m Get in habit of introducing local variables
® Accumulating within loops
e Your way of telling compiler not to check for aliasing

— 26 — 15-213, F'02

Machine-Independent Opt. Summary

Code Motion

m Compilers are good at this for simple loop/array structures
m Don’t do well in presence of procedure calls and memory aliasing

Reduction in Strength

m Shift, add instead of multiply or divide
® compilers are (generally) good at this
® Exact trade-offs machine-dependent

m Keep data in registers rather than memory
® compilers are not good at this, since concerned with aliasing

Share Common Subexpressions
m compilers have limited algebraic reasoning capabilities

o7 15-213, F'02

Important Tools

Measurement

m Accurately compute time taken by code
e Most modern machines have built in cycle counters
e Using them to get reliable measurements is tricky

m Profile procedure calling frequencies
e Unix tool gprof

Observation

m Generating assembly code
e Lets you see what optimizations compiler can make
e Understand capabilities/limitations of particular compiler

— 28—

15-213, F'02

Code Profiling Example

Task

m Count word frequencies in text document
m Produce sorted list of words from most frequent to least

Steps

m Convert strings to lowercase
m Apply hash function

m Read words and insert into hash table
® Mostly list operations
e Maintain counter for each unique word

m Sort results

Data Set

m Collected works of Shakespeare
m 946,596 total words, 26,596 unique
m Initial implementation: 9.2 seconds

Shakespeare’s
most frequent words

29,801 the
27,529 and
21,029 I
20,957 to
18,514 of
15,370 a
14010 you
12,936 my
11,722 in
11,519 that

15-213, F'02

Code Profiling

Augment Executable Program with Timing Functions

m Computes (approximate) amount of time spent in each
function

m Time computation method
® Periodically (~ every 10ms) interrupt program
® Determine what function is currently executing
® Increment its timer by interval (e.g., 10ms)

m Also maintains counter for each function indicating number
of times called

Using
gcc -02 -pg prog. —o prog
./prog
® Executes in normal fashion, but also generates file gmon . out
gprof prog

® Generates profile information based on gmon . out
- 30 -

15-213, F'02

Profiling Results

% cumulative
time seconds
86.60 8.21
5.80 8.76
4.75 9.21
1.27 9.33

self
seconds

8.21
0.55
0.45
0.12

calls
1
946596
946596
946596

self

ms/call

8210.00
0.00
0.00
0.00

total

ms/call

8210.00
0.00
0.00
0.00

name
sort words
lowerl

find ele rec
h add

Call Statistics

m Number of calls and cumulative time for each function

Performance Limiter
m Using inefficient sorting algorithm
m Single call uses 87% of CPU time

—31-—

15-213, F'02

—_32—

Code
Optimizations

CPU Secs.

7] Rest
g Hash

o Lower
m List
a Sort

O =~ N W M OO N 0 © O

-,i,=,5,=

—

Initial Quicksort Iter First Iter Last Big Table Better Hash

Linear Lower

m First step: Use more efficient sorting function
m Library function gsort

15-213, F'02

— 33 -

Further Optimizations

2
1.8

16]

14

m Rest

o Hash

- o Lower
- m List

= Sort
-
. : | .

T
Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

12
.

1
0.8
0.6
04
0.2
0

CPU Secs.

m lter first: Use iterative function to insert elements into linked
list
® Causes code to slow down
m lter last: Iterative function, places new entry at end of list
® Tend to place most common words at front of list
m Big table: Increase nhumber of hash buckets
m Better hash: Use more sophisticated hash function

m Linear lower: Move strlen out of loop
15-213, F’'02

Profiling Observations

Benefits
m Helps identify performance bottlenecks

m Especially useful when have complex system with many
components

Limitations
m Only shows performance for data tested

m E.g., linear lower did not show big gain, since words are
short
e Quadratic inefficiency could remain lurking in code

m Timing mechanism fairly crude
e Only works for programs that run for > 3 seconds

—34 — 15-213, F’'02

