15-213

"The course that gives CMU its Zip!"

Floating Point Sept 5, 2002

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

class04.ppt

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...;
float f = ...;
double d = ...;

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

Assume neither d nor f is NaN

 \cdot 2/3 == 2/3.0

• d < 0.0 \Rightarrow ((d*2) < 0.0)

 $\cdot d > f \Rightarrow -f > -d$

• d * d >= 0.0

• (d+f)-d == f

- 2 - 15-213, F'02

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

 $\sum_{k=-j}^{i} b_k \cdot 2^k$

-3 - 15-213, F'02 -4 - 15-213, F'02

Frac. Binary Number Examples

Value	Representatio
5-3/4	101.112
2-7/8	10.1112
63/64	0.1111112

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - •Use notation 1.0 − ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

Value	Representation			
1/3	0.0101010101[01]2			
1/5	0.001100110011[0011]2			
1/10	0.0001100110011[0011],			

-5- 15-213, F'02 -6- 15-213, F'02

Floating Point Representation

Numerical Form

- -1s M 2E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

 $= \exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

```
E = Exp - Bias
```

- Exp: unsigned value denoted by exp
- Bias : Bias value
 - » Single precision: 127 (Exp: 1...254, E: -126...127)
 - » Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - » in general: Bias = 2e-1 1, where e is number of exponent bits

Significand coded with implied leading 1

```
M = 1.xxx...x_2
```

- xxx...x: bits of frac
- Minimum when 000...0 (*M* = 1.0)
- Maximum when 111...1 ($M = 2.0 \varepsilon$)
- Get extra leading bit for "free"

-9-

Denormalized Values

Condition

 $= \exp = 000...0$

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- = exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Normalized Encoding Example

Value

```
Float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub> = 1.1101101101101<sub>2</sub> X 2<sup>13</sup>
```

Significand

```
M = 1.1101101101101_2
frac= 11011011011010000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100
```

- 10 - 15-213, F'02

Special Values

Condition

■ exp = 111...1

Cases

- \blacksquare exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- \blacksquare exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞

-11 - 15-213, F'02 -12 - 15-213, F'02 15-213, F'02

Summary of Floating Point Real Number Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

7	6 3	2 0
S	ехр	frac

- 13 - 15-213, F'02 - 14 - 15-213, F'02

Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

Dynamic Range

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 ←closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers					
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	
	0	0001	000	-6	· · · · · · · · · · · · · · · · · · ·
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8*1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 ← largest norm
	0	1111	000	n/a	inf
16					15-213 E'02

- 15 - 15-213, F'02 - 16 - 15-213, F'02

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

- 17 - 15-213, F'02 - 18 - 15-213, F'02

Interesting Numbers

Description

Description	exp	ITAC	Numeric value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single ≈ 1.4 X 10 ⁻⁴ ■ Double ≈ 4.9 X 10 ⁻⁴	5	0001	2-{23,52} X 2-{126,1022}
Largest Denormalized ■ Single ≈ 1.18 X 10 ■ Double ≈ 2.2 X 10	-38	1111	$(1.0 - \epsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized Just larger than lar			1.0 X 2 ^{- {126,1022}}
One	0111	0000	1.0
■ Single ≈ 3.4 X 10 ³⁸ ■ Double ≈ 1.8 X 10 ³	1	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
- 19 -			15-213, I

frac

Numeric Value

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

- 19 - 15-213, F′02 - 20 - 15-213, F′02 - 20 -

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

- 21 - 15-213, F'0

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way-round up)
1.2450000	1.24	(Half way-round down)

- 22 - 15-213, F'02

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...,

Examples

■ Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.001102	10.012	(>1/2-up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.10100	10.10,	(1/2-down)	2 1/2

FP Multiplication

Operands

 $(-1)^{s1} M1 2^{E1}$ * $(-1)^{s2} M2 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

- Sign s: s1 ^ s2
- Significand M: M1 * M2
- **Exponent** *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round *M* to fit frac precision

Implementation

■ Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 \ 2^{E1}$ $(-1)^{s2} M2 \ 2^{E2}$ Assume E1 > E2 $(-1)^{s2} M2$

 $(-1)^{s} M$

Exact Result

 $(-1)^s M 2^E$

- Sign *s*, significand *M*:
 - Result of signed align & add
- Exponent *E*: *E1*

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

■ Closed under addition? YES

But may generate infinity or NaN

■ Commutative? YES
■ Associative? NO

Overflow and inexactness of rounding

■ 0 is additive identity? YES

■ Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$? ALMOST

Except for infinities & NaNs

5 – 15-213, F′02 – 26 – 15-213, F′02

15-213. F'02

Math. Properties of FP Mult

Compare to Commutative Ring

■ Closed under multiplication? YES

• But may generate infinity or NaN

■ Multiplication Commutative? YES

■ Multiplication is Associative? NO

Possibility of overflow, inexactness of rounding

■ 1 is multiplicative identity? YES

Multiplication distributes over addition? NO

Possibility of overflow, inexactness of rounding

Monotonicity

■ $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$? ALMOST

Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double Or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Answers to Floating Point Puzzles

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NAN

* x == (int) (float) x

* x == (int) (double) x

* f == (float) (double) f

* d == (float) d

* f == -(-f);

* 2/3 == 2/3.0

* d < 0.0 \Rightarrow ((d*2) < 0.0)

* d > f \Rightarrow -f > -d

* d * d >= 0.0

* (d+f) -d == f

No: 24 bit significand
Yes: 53 bit significand
Yes: increases precision
No: loses precision
Yes: Just change sign bit
No: 2/3 == 0
Yes!
Yes!
Yes!

No: Not associative

15 010 E'00

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

-29 - 15-213, F'02 -30 - 15-213, F'02 15-213, F'02

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form M X 2^E
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

-31 - 15-213, F'02