15-213

"The course that gives CMU its Zip!"

Integers Sep 3, 2002

Topics

- Numeric Encodings
 - Unsigned & Two's complement
- Programming Implications
 - C promotion rules
- Basic operations
 - Addition, negation, multiplication
- Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

class03.ppt 15-213 F'02

C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Encoding Integers

Unsigned

Two's Complement

15-213. F'02

-4-

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int x = 15213;
short int y = -15213;

■ C short 2 bytes long

Deci	malHexBina	ıryx	

Sign Bit

-3-

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101 y = -15213: 11000100 10010011

Weight15	213-15213	

Numeric Ranges

Unsigned Values

■
$$UMax = 2^w - 1$$
111...1

Two's Complement Values

■
$$TMin = -2^{w-1}$$

100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

■ Minus 1

Values for W = 16

DecimalHe	kBinary UMa		

Values for Different Word Sizes

W81632	W8163264						

Observations

- | TMin | = TMax + 1 • Asymmetric range
- *UMax* = 2 * *TMax* + 1

C Programming

- #include <limits.h>
 - K&R App. B11
- Declares constants, e.g.,
 - ULONG MAX
 - LONG_MAX
 - LONG MIN
- Values platform-specific

-5- 15-213, F'02 -6- 15-213, F'02

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
short int x = 15213;

unsigned short int ux = (unsigned short) x;

short int y = -15213;

unsigned short int uy = (unsigned short) y;
```

Resulting Value

- No change in bit representation
- Nonnegative values unchanged
 - ux = 15213
- Negative values change into (large) positive values
 - uy = 50323

Relation between Signed & Unsigned

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

-9- 15-213, F'02

Relation Between Signed & Unsigned

$$uy = y + 2 * 32768 = y + 65536$$

- 10 - 15-213, F'02

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

Casting

-11 -

 Explicit casting between signed & unsigned same as U2T and T2U

Implicit casting also occurs via assignments and procedure calls

15-213. F'02

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

Constant ₁	Constant ₂	Relation	Evaluation	
0	0ΰ	==	unsigned	
-1	0	<	signed	
-1	00	>	unsigned	
2147483647	-2147483648	>	signed	
2147483647U	-2147483648	<	unsigned	
-1	-2	>	signed	
(unsigned) -1	2	>	unsigned	
2147483647	2147483648U	<	unsigned	
-12- 2147483647	(int) 2147483648U	>	signed, F'02	

Explanation of Casting Surprises

2's Comp. → Unsigned

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

- 14 -

- 16 -

- Make k copies of sign bit:
- $X' = X_{W-1}, ..., X_{W-1}, X_{W-1}, X_{W-2}, ..., X_0$ **R copies of MSB**

 X'

 **X'*

 **X'*

Sign Extension Example

TMin

	Decimal	Hex				Binary			
X	15213			3В	6D			00111011	01101101
ix	15213	00	00	3В	6D	00000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Justification For Sign Extension

Prove Correctness by Induction on k

■ Induction Step: extending by single bit maintains value

- Key observation:
- $-2^{w-1} = -2^w + 2^{w-1}$
- Look at weight of upper bits:

$$x -2^{w-1} x_{w-1}$$

$$x'$$
 $-2^{w} x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}$

- 13 -

15-213. F'02

15-213. F'02

Why Should I Use Unsigned?

Don't Use Just Because Number Nonzero

■ C compilers on some machines generate less efficient code

```
unsigned i;
for (i = 1; i < cnt; i++)
  a[i] += a[i-1];
```

■ Easy to make mistakes

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit's Worth of Range

Working right up to limit of word size

- 17 - 15-213, F'02

Comp. & Incr. Examples

x = 15213

lHex	Binaryx	

0

DecimalHe	kBinary0	~0

Negating with Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

Complement

Increment

Warning: Be cautious treating int's as integers

-18 - ■ **OK here** 15-213, F'02

Unsigned Addition

Standard Addition Function

■ Ignores carry output

Implements Modular Arithmetic

$$s = \mathsf{UAdd}_w(u, v) = u + v \bmod 2^w$$

$$UAdd_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \ge 2^w \end{cases}$$

Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum Add₄(*u* , *v*)
- Values increase linearly with *u* and *v*
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

-21 - 15-213, F'02 -22 - 15-213, F'02

Mathematical Properties

Modular Addition Forms an Abelian Group

- Closed under addition $0 \le UAdd_w(u, v) \le 2^w - 1$
- Commutative $UAdd_{u}(u, v) = UAdd_{u}(v, u)$
- Associative
 UAdd_u(t, UAdd_u(u, v)) = UAdd_u(UAdd_u(t, u), v)
- 0 is additive identity UAdd_w(u, 0) = u
- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

• Will give s == t
```

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

PosOver

NegOver

0

Visualizing 2's Comp. Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum < -2^{w-1}
 - Becomes positive
 - At most once

– 26 – 15-213, F'02

Detecting 2's Comp. Overflow

Task

- 25 -

- **Given** $s = TAdd_w(u, v)$
- **Determine if** $s = Add_w(u, v)$
- **Example**

Claim

Overflow iff either:

$$u, v < 0, s \ge 0$$
 (NegOver)
 $u, v \ge 0, s < 0$ (PosOver)
ovf = (u<0 == v<0) && (u<0 != s<0);

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

Let
$$\mathsf{TComp}_w(u) = \mathsf{U2T}(\mathsf{UComp}_w(\mathsf{T2U}(u)))$$

 $\mathsf{TAdd}_w(u, \mathsf{TComp}_w(u)) = 0$

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

15-213. F'02

Multiplication

Computing Exact Product of w-bit numbers x, y

Either signed or unsigned

Ranges

- Unsigned: $0 \le X^* V \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x^* y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$
 - Up to 2w-1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (TMin,)2

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

■ Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

- 29 - 15-213, F'02 - 30 - 15-213, F'02

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to w-bit number up = UMult_w(ux, uy)
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two's Complement Multiplication

- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number p = TMult_w(x, y)

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p

Power-of-2 Multiply with Shift

Operation

- 33 -

- u << k gives u * 2^k
- Both signed and unsigned

- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically

15-213. F'02

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- u >> k gives | u / 2^k |
- Uses logical shift

15-213. F'02 - 34 -

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\mathbf{x} \gg \mathbf{k}$ gives $\left[\mathbf{x} / 2^{\mathbf{k}}\right]$
- Uses arithmetic shift
- Rounds wrong direction when u < 0</p>

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $[x / 2^k]$ (Round Toward 0)
- Compute as $|(x+2^k-1)/2^k|$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Case 1: No rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication $0 \le UMult_w(u, v) \le 2^w 1$
- Multiplication Commutative UMult_w(u, v) = UMult_w(v, u)
- Multiplication is Associative $UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$
- 1 is multiplicative identity UMult_w(u, 1) = u
- Multiplication distributes over addtion $UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$

-37 - 15-213, F'02 -38 - 15-213, F'02

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

■ Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

Both are rings

- 39 -

Integers obey ordering properties, e.g.,

$$u>0$$
 \Rightarrow $u+v>v$
 $u>0, v>0$ \Rightarrow $u\cdot v>0$

■ These properties are not obeyed by two's comp. arithmetic

15-213. F'02

C Puzzle Answers

- Assume machine with 32 bit word size, two's comp. integers
- *TMin* makes a good counterexample in many cases

```
\square x < 0
                                                  False:
                                                         TMin
                             ((x*2) < 0)
                                                         0 = UMin
\square ux >= 0
                             (x << 30) < 0
                                                 True: X_1 = 1
□ x & 7 == 7
                                                  False: 0
\square ux > -1
                                                  False: -1, TMin
\square x > v
                             -x < -v
                                                  False: 30426
\square x * x >= 0
                                                  False: TMax, TMax
\square x > 0 & y > 0
                             x + y > 0
                                                         -TMax < 0
                                                  True:
\square \times >= 0
\square x \le 0
                                                  False: TMin
                             -x >= 0
```