Fall 2003 CMSC 311: Project 1 Kruskal and Scolnik
Due October 22, 11PM.

You are to write a C (or C++) program to determine the distance from START to FINISH
in a maze. The maze is on an m x n grid (where m,n < 1024). Some grid points are walls,
which are represented by a ’1’. The other grid points are open space that can be moved
onto, which are represented by a ’0’. Distance is measured by moving one grid space north,
south, east, or west. But you are not allowed to move into (or through) a wall. You can
assume there is a path from START to FINISH.

INPUT:

e SIZE: Positive integers m, n.

e MAZE: An m x n table of bits, where a '1’ represents wall and a ’0’ represents open
space. Each row will start on a new line. The bits will be stored in base 10 unsigned
numbers. The first number in a row will represent the first 32 bits of the row, the
second number will represent the second 32 bits, etc. You can assume 32|n.

e START: An m x n table of bits, where a '1’ represents the start location and all other
bits are ’0’. It it represented the same way as MAZE.

e FINISH: An m X n table of bits, where a ’1’ represents the finish location and all other
bits are ’0’. It it represented the same way as MAZE.

(MAZE, START, and FINISH should each use mn/32 words of memory.)

ALGORITHM:

1. {Produce the complement of MAZE; this is the OPEN space that can be moved onto.}
OPEN < not MAZE.

2. NOW « START; COUNTER < 0;

3. {Check if arrived at FINISH.}
If NOW & FINISH # 0 then print COUNTER and exit;

4. Increment COUNTER,;

5. {Find new locations you can reach: For every '1’ bit in NOW copy it north, south,
east, and west into NEW_NOW. Do this using bit operations on words. Be careful
about crossing word boundaries east and west.}

6. {Make sure you do not walk into a wall.}
NOW + NEW_NOW & OPEN;

7. Go to step 3;

Sample input files will be provided in the posting account directory ss311001/Projects/P1.



