
Low-level operations in C

C was invented as a high-level systems programming language
Higher than assember, but still close to the machine

Binary data representation
int type: two's complement
float type: IEEE 754
hexadecimal: another representation for binary

Hexadecimal constant:
int i = 0x1234abcd;

Can use upper or lower case for digits
Read or print hex values:

scanf ("%x", &i);

printf ("%x", i);

Manipulating individual bits:
bitwise logical operators
bitshift operators

Bitwise operators

Logical operators
&&, || and, or
operate on entire value

int x = 0, y = 1;

(x && y) value 0
(x || y) value 1

May want to work with individual bits
int x = 2, y = 7;

(x && y) value 1
What about bits? value
x 0000 0000 0000 0000 0000 0000 0000 0010 2
y 0000 0000 0000 0000 0000 0000 0000 0111 7

Bitwise and
x & y 0000 0000 0000 0000 0000 0000 0000 0010 2

Bitwise or
x | y 0000 0000 0000 0000 0000 0000 0000 0111 7

Bitwise xor (exclusive-or)
x ^ y 0000 0000 0000 0000 0000 0000 0000 0101 5
Value of a bit is 1 if only one bit is 1

Complement
~x 1111 1111 1111 1111 1111 1111 1111 1101
~y 1111 1111 1111 1111 1111 1111 1111 1000
Each bit is "flipped" to opposite value
How is this related to negative value?

Bitshift operators

x << n Shift bits of x left by n digits
Insert 0's on the right

x >> n Shift bits of x right by n digits
If unsigned or non-negative, insert 0's on left
If signed, may be system dependent

Important: x DOES NOT CHANGE!
(just like x + 2 does not change x)
x <<= n change x
x >>= n

x and n must be int

Examples:
int x = 5;

x 0000 0000 0000 0000 0000 0000 0000 0101

x << 3 0000 0000 0000 0000 0000 0000 0010 1000

x >> 2 0000 0000 0000 0000 0000 0000 0000 0001

What arithmetic operations do these correspond to?

Bit operations: Test a bit

Problem: given int i, is bit n set (equal to 1)?
 bn b0

i 0000 0000 0000 0000 0000 0000 0000 0010

bit n
How can we test if this bit is 1?
We can use & operator with a "mask" variable:
mask 0000 0000 0000 0000 0010 0000 0000 0000

if (i & mask)

printf ("yes");

else

printf ("no");

What is the problem with this?
We would need 32 different masks, depending on the value of n!

Answer:
i & (1 << n) /* idiom */

or

(i >> n) & 1 (Shift nth bit to first location, compare to mask of 1)

Bit operations: Set a bit

Problem: given int i, set bit n to 1
 bn b0

i 0000 0000 0000 0000 0000 0000 0000 0010

bit n
How can we make sure this bit is set to1 (and not affect any other bits)?

We can use | operator with a "mask":
mask 0000 0000 0000 0000 0010 0000 0000 0000

i |= mask;

What is the problem with this?

Answer:
i |= (1 << n); /* idiom */

(Shift 1 bit n places to the left, then apply or operator to the result and i).

Bit operations: Clear a bit

Problem: given int i, set bit n to 0
 bn b0

i 0000 0000 0000 0000 0000 0000 0000 0010

bit n
How can we make sure this bit is 0 (and not affect any other bits)?

We can use & operator with a "mask":
mask 1111 1111 1111 1111 1101 1111 1111 1111

i &= mask;

What is the problem with this?

Answer:
i &= ~(1 << n); /* idiom */

Shift 1 bit n places to the left
Flip bits to get all 1's except 0 in bit n
Apply & operator to clear bit n

Cast operator
big little

Problem: given int i, access a particular byte endian
int i = 0x1234abcd; Contents
Is this big-endian or little-endian? How can we tell? 1000 12 cd

By definition, if we look at the bits in i, the leftmost bits are 1001 34 ab
0001 0010 (big- or little-endian) 1002 ab 34
Value is independent of byte order 1003 cd 12

Another way to look at 4 bytes: 1004
char c[4]; 1005

What about 1006
c[0] = (char) i; 1007

Doesn't do what we want, because cast converts value
from int to char
What type of value is char really?

Need to look at the individual memory locations as char
How do we refer to memory locations?
int * iptr = &i;

char * byte_ptr = (char *) &i;

Converts pointer, not data
Now we can increment byte_ptr to look at each byte within the int

endian
Address

Endian test
big little

main () endian
{ Contents
 int i = 0x1234abcd, n; 1000 12 cd
 unsigned char * byte = (unsigned char *) &i; 1001 34 ab

1002 ab 34
 for (n = 0; n < 4; n++) 1003 cd 12
 printf ("%x ", *(byte + n)); 1004

1005
 return 0; 1006
} 1007

Why unsigned char?
Output (IBM PC):

cd ab 34 12

Output (Sun):
12 34 ab cd

endian
Address

Test bits: float

How would we test the bits of a float value?
float f = 1024;

int n;

for (n = 0; n < 32; n++)

if (f & (1 << n))

 printf ("1");

else

 printf ("0");

Compile error!
Need a way to look at f as if it were int:

float f = 1024;

int n, i;

i = (int) f;

for (n = 0; n < 32; n++)

if (i & (1 << n))

 printf ("1");

else

 printf ("0");

Can't use cast on f: value is converted to int.
Cast a pointer:

int * iptr = (int *)&f;

i = *iptr;

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

