Low-level operations in C

C was invented as a high-level systems programming language
Higher than assember, but still close to the machine
Binary data representation
I nt type: two's complement
fl oat type: IEEE 754

hexadecimal: another representation for binary
Hexadecimal constant:

int i = 0x1234abcd;

Can use upper or lower case for digits
Read or print hex values:

scanf ("W%&", &);

printf ("9%", i);
Manipulating individual bits:

bitwise logical operators

bitshift operators

Bitwise operators

Logical operators
&%, || and,or
operate on entire value
int x =0, y = 1;
(X && vy) value O
(x || vy) value 1

May want to work with individual bits
int x =2, y =17,

(x && vy) value 1

What about bits? value
X 0000 0000 0000 0000 0000 0000 0000 0010

y 0000 0000 0000 0000 0000 0000 0000 0112

Bitwise and

X &y 0000 0000 OOOO O0OOO 0000 0000 0000 0010

Bitwise or
X |y 0000 0000 0000 0000 0000 0000 0000 0112

Bitwise xor (exclusive-or)
Xx A~y 0000 0000 0000 OOOO 0000 0000 0000 O101

Value of a bitis 1if only one bitis 1

Complement
~X 1111 11112 1112 1111 1111 1111 1111 1101
~y 1111 11211 1111 1111 1111 1111 1111 1000

Each bit is "flipped" to opposite value
How is this related to negative value?

Bitshift operators

X << n Shift bits of x left by n digits
Insert 0's on the right

X >> n Shift bits of x right by n digits
If unsigned or non-negative, insert 0's on left
If signed, may be system dependent

Important: x DOES NOT CHANGE!
(ust like x + 2 does not change x)
X <<= n } change x
X >>=n

x and n must be int

Examples:
int x = 5;
X 0000 0000 0000 0000 0000 0000
X << 3 0000 0000 0000 0000 0000 0000
x >> 2 0000 0000 0000 0000 0000 0000

What arithmetic operations do these correspond to?

0000
0010

0000

0101
1000
0001

Bit operations: Test a bit

Problem: given int i, is bit n set (equal to 1)?
bn bO
i 0000 0000 0000 0000 0000 0000 0000 0010

bit n
How can we test if this bit is 1?
We can use & operator with a "mask" variable:

mask 0000 0000 0000 0000 0010 QOO0 0000 0000

T
i f (i & mask)
printf ("yes");
el se
printf ("no");

What is the problem with this?
We would need 32 different masks, depending on the value of n!

Answer:
I & (1 << n) [* 1diom?*/
or
(i >n) &1 (Shift nth bit to first location, compare to mask of 1)

Bit operations: Set a bit
Problem: giveninti, setbitnto 1
bn bO
i 0000 0000 0000 0000 0000 QOO0 0000 0010

bit n
How can we make sure this bit is set tol (and not affect any other bits)?

We can use | operator with a "mask":
mask 0000 0000 0000 0000 0010 QOO0 0000 0000

I | = mask;
What is the problem with this?

Answer:
I |= (1 << n); [* 1diom*/

(Shift 1 bit n places to the left, then apply or operator to the result and i).

Bit operations: Clear a bit

Problem: giveninti, setbitnto 0
bn bO
i 0000 0000 0000 0000 0000 QOO0 0000 0010

bit n
How can we make sure this bit is 0 (and not affect any other bits)?

We can use & operator with a "mask":
mask 1111 1111 1121 1112 1101 1111 1111 1111

?

I &= mask;
What is the problem with this?

Answer:
I & ~(1 << n); [* idiom?*/

Shift 1 bit n places to the left
Flip bits to get all 1's except O in bit n
Apply & operator to clear bit n

Cast operator

big little

Problem: given int i, access a particular byte endian endian

int I = 0x1234abcd; Address Contents

Is this big-endian or little-endian? How can we tell? 1000f 12 cd
By definition, if we look at the bits in i, the leftmost bits are 1001} 34 ab

0001 0010 (big- or little-endian) 1002 ab 34

Value is independent of byte order 1003} cd 12
Another way to look at 4 bytes: 1004

char c[4]; 1005
What about 1006

c[0] = (char) i; 1007

Doesn't do what we want, because cast converts value
from i nt to char

What type of value is char really?
Need to look at the individual memory locations as char
How do we refer to memory locations?
Int * iptr = & ;
char * byte ptr = (char *) & ;
Converts pointer, not data
Now we can increment byt e_ptr to look at each byte within the i nt

Endian test

big little
mai n () endian endian
{ Address Contents
int i = 0x1234abcd, n; 1000f 12 cd
unsi gned char * byte = (unsigned char *) & ; 1001} 34 ab
1002} ab 34
for (n = 0; n < 4; nt++) 1003] cd 12
printf ("% ", *(byte + n)); 1004
1005
return O; 1006
} 1007

Why unsi gned char ?
Output (IBM PC):

cd ab 34 12
Output (Sun):

12 34 ab cd

Test bits: float

How would we test the bits of a float value?
float f = 1024;

int n;
for (n = 0; n < 32; n++t)
if (f & (1 << n))
printf ("1");
el se
printf ("0");
Compile error!
Need a way to look at f as if it were int:
float f = 1024;
int n, i;
i = (int) f;
for (n = 0; n < 32; n++)
If (i & (1 << n))
printf ("1");
el se
printf ("0");
Can't use cast on f: value is converted to int.
Cast a pointer:
int * iptr = (int *)&f;
I = *iptr;

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

