Asynchronous counter: flip-flops driven by different clocks

Clock period of each successive flip-flop is 2 times previous one
power of 2 times the first clock

Use FSM to implement a synchronous counter

```
2-bit (mod 4) counter
starts at 00
counts up to 11
resets to 00 after 11
Finite state machine
state (q): 2 bits, initially 00
output (z): same as state
input
x = 0: same state
x = 1: increment
```

Usage

Keeping track of number of bits sent Program counter (PC)

Principles of Computer Architecture by M. Murdocca and V. Heuring

Increments each clock cycle to point to next instruction

q_1	${\tt q}_0$	x
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

1a. State transition table inputs

Principles of Computer Architecture by M. Murdocca and V. Heuring

q_1	\mathbf{q}_0	x	${\tt q_1}^{^+}$	$\mathbf{q_0}^{\dagger}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

1b. New state

input 0: no change input 1: increment

Principles of Computer Architecture by M. Murdocca and V. Heuring

\mathtt{q}_1	${\tt d}^0$	x	${\bf q_1}^{\scriptscriptstyle +}$	${\bf q_0}^{\tt t}$	\mathbf{z}_1	\mathbf{z}_0	$0 - z_0 z_1$
0	0	0	0	0	0	0	
0	0	1	0	1	0	0	
0	1	0	0	1	0	1	<i>y</i>
0	1	1	1	0	0	1	1
1	0	0	1	0	1	0	\
1	0	1	1	1	1	0	\mathcal{T}
1	1	0	1	1	1	1	(11)
1	1	1	0	0	1	1	
							(') 0 1

Principles of Computer Architecture by M. Murdocca and V. Heuring

1c. Output: same as current state label

Note that the figure reverses our usual definition of the output bits

\mathbf{q}_1	${\tt q}_0$	x	${\tt q_1}^{^{\scriptscriptstyle +}}$	${\tt q_0}^{\tt t}$	\mathbf{z}_1	\mathbf{z}_0	$\mathtt{D_1}$	D_0
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	1	0	0	1	0	1	0	1
0	1	1	1	0	0	1	1	0
1	0	0	1	0	1	0	1	0
1	0	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	0	0

- 2. Pick flip-flops: both D
- 3. Use excitation tables to get values for D (copy columns for next state)

Principles of Computer Architecture by M. Murdocca and V. Heuring

Input			Next		Output	t			ROM	Л
q_1	${f d}^0$	x	${\tt q_1}^{\scriptscriptstyle +}$	${\tt q_0}^{\scriptscriptstyle +}$	\mathbf{z}_1	\mathbf{z}_0	D_1	D_0	Address	Data
0	0	0	0	0	0	0	0	0	000	0000
0	0	1	0	1	0	0	0	1	001	0001
0	1	0	0	1	0	1	0	1	010	0101
0	1	1	1	0	0	1	1	0	011	0110
1	0	0	1	0	1	0	1	0	100	1010
1	0	1	1	1	1	0	1	1	101	1011
1	1	0	1	1	1	1	1	1	110	1111
1	1	1	0	0	1	1	0	0	111	1100

4. Draw circuit: ROM

address: q_1q_0x data: $z_1z_0D_1D_0$

Input			Next		Output				Minterms
q_1	\mathbf{q}_0	x	${\tt q_1}^{\star}$	${\tt d^0}_{\tt t}$	\mathbf{z}_1	\mathbf{z}_0	$\mathtt{D_1}$	\mathbf{D}_0	\mathbf{z}_1
0	0	0	0	0	0	0	0	0	•
0	0	1	0	1	0	0	0	1	
0	1	0	0	1	0	1	0	1	
0	1	1	1	0	0	1	1	0	
1	0	0	1	0	1	0	1	0	$\mathbf{q}_1 \backslash \mathbf{q}_0 \backslash \mathbf{x}$
1	0	1	1	1	1	0	1	1	q_1/q_0x
1	1	0	1	1	1	1	1	1	$\mathtt{q}_{1}\mathtt{q}_{0}\backslash \mathtt{x}$
1	1	1	0	0	1	1	0	0	$\mathbf{q_1}\mathbf{q_0}\mathbf{x}$

4. Draw circuit: gates

Minterms

$$z_1 = q_1 \backslash q_0 \backslash x + q_1 \backslash q_0 x + q_1 q_0 \backslash x + q_1 q_0 x$$

etc.

Simplified

$$\mathbf{z}_1 = \mathbf{q}_1$$

$$\mathbf{z}_0 = \mathbf{q}_0$$

$$\mathbf{p}_1 = \mathbf{q}_1 \backslash \mathbf{q}_0 + \mathbf{q}_0 (\backslash \mathbf{q}_1 \mathbf{x} + \mathbf{q}_1 \backslash \mathbf{x})$$

$$\mathbf{p}_0 = \backslash \mathbf{q}_0 \mathbf{x} + \mathbf{q}_0 \backslash \mathbf{x}$$

Finite state machines: 3-state counter

Note that it is not necessary to use all possible states for the counter 3-state counter: reset to 00 after 10

Changes:

Replace entries for state 11 in state transition table with "d" Next state after state 10 is 00 with input 1

Finite state machines: 3-state counter

Input			Next		Output			
q_1	${f q}_0$	x	q_1^{\dagger}	$\mathbf{q_0}^{\dagger}$	\mathbf{z}_1	\mathbf{z}_0	$\mathtt{D}_\mathtt{1}$	D ₀
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	1	0	0	1	0	1	0	1
0	1	1	1	0	0	1	1	0
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	0	0	0
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Other possible counter variations
Use Mealy machine
Use input to reset
Input 0: increment

Input 1: reset

Principles of Computer Architecture by M. Murdocca and V. Heuring

Other possible counter variations

Decrement

Input 0: hold

Input 1: decrement

Increment/decrement

Input 0: increment

Input 1: decrement

Additional inputs

Asynchronous clear: reset value immediately to 00

Enable/disable

When this input is 0, counter continues to output current value

When 1, perform normal operations

Additional output

Counter out

Normally 1, but 0 when maximum value is reached

What could this be used for?

(Think of a connection with enable)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.