
Instructions: Data Transfer

load and store architecture
MIPS: can access memory only to transfer data to or from registers
CISC: may allow, for example, add to memory location, store in register

load: copy the data from memory into a register.
store: copy the data from a register to memory.

lw $rt, offset($rs) Load word from memory location to register
sw $rt, offset($rs) Store word from register to memory location

Offset is a 16-bit 2C value (immediate); all are I-type
semantics of lw

 Addr <-- R[s] + (IR15)
16::IR15-0

 R[t] <-- M4[Addr]

compute address
 - add the contents of register s (base) to the sign-extended offset
 - offset is immediate
 - non-aligned address: hardware exception
get data
 - copy 4 bytes located at memory address starting at Addr to register t.
 - CPU fetches the four bytes based on the endianness of the machine

sw similar to lw but the 4 byte quantity is copied from the register to memory.
 M4[Addr] <-- R[t] stored in the endianness of the machine

Instructions: Data Transfer

Byte operations
lb $rt, offset($rs) Load sign-extended byte

from memory location to register
lbu $rt, offset($rs) Load zero-extended (unsigned) byte

from memory location to register
sb $rt, offset($rs) Store the least significant byte of a

register to memory location
What about sbu?
For lb, the address is computed the same way as lw,

but the address does not have to be word aligned.

Addr <-- R[s] + (IR15)
16::IR15-0

R[t] <-- (M1[Addr]7)
24::M1[Addr]

Since the value is interpreted as 2C, the fetched byte is sign-extended to 32 bits.
lbu is just like lb except the byte is zero-extended in the register
sb is similar to sw:

M1[Addr] <-- R[t]7-0
The least significant byte of register t is copied to the address in memory.

Do we really need to have separate instructions to load, store bytes?

Instructions: Data Transfer

machine code
lw $rt, offset($rs)

100101 01000 01001 00000 00000 100000
b31-26 b25-21 b20-16 b15-0

opcode $rs $rt immediate

opcodes: 100 xxx (load)
101 xxx (store)

$rs: base address
$rt: target register
immediate: offset

Instructions: Data Transfer

Halfword operations (short int)
short int is usually 16 bits
lh $rt, offset($rs) Load halfword from memory location to register

Data is sign-extended in register
lhu $rt, offset($rs) Data is zero-extended in register
sh $rt, offset($rs) Store halfword from register to memory location

Loading constant
lui $rt, immed

Semantics:

R[t] = IR15-0 0
16

load the lower halfword of immed into upper halfword of $rt
lower bits of $rt are set to 0
$rs is ignored

Data transfer: summary

R-type I-type
Load Word lw

Halfword lh

Halfword unsigned lhu

Byte lb

Byte unsigned lbu

Constant lui

Store Word sw

Halfword sh

Byte sb

Instruction Types

Arithmetic

Logical

Data Transfer

Compare/Branch

Jump

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

