
Instruction formats

3 instruction formats: all 32 bits
R-type: register

arithmetic and logical
I-type: immediate

use constant in instruction
arithmetic, logical, conditional branch

J-type: jump
unconditional branch

Design principle #3: "Good design demands good compromises."
Size of instruction vs. number of formats



Register conventions

 register conventions and mnemonics
Number Name Use
0 $zero hardwired 0 value
1 $at used by assembler (pseudo-instructions)
2-3 $v0-1 subroutine return value
4-7 $a0-3 arguments: subroutine parameter value
8-15 $t0-7 temp: can be used by subroutine without saving
16-23 $s0-7 saved: must be saved and restored by subroutine
24-25 $t8-9 temp
26-27 $k0-1 kernel: interrupt/trap handler
28 $gp global pointer (static or extern variables)
29 $sp stack pointer
30 $fp frame pointer
31 $ra return address for subroutine

Hi, Lo used in multiplication (provide 64 bits for result)

hidden registers
PC, the program counter, which stores the current address of the instruction

being executed
IR, which stores the instruction being executed



Instruction formats: R-type, I-type

R-type: register
addu    $r10,$r8,$r9  # add 2 numbers

000000 01000 01001  01010  00000 100001
b31-26 b25-21 b20-16 b15-11 b10-6 b5-0
opcode    $rs      $rt    $rd  shamt function

3 registers: 2 source, 1 destination
operation: opcode and function



Instruction formats: R-type, I-type

R-type: register
addu    $r10,$r8,$r9  # add 2 numbers

000000 01000 01001  01010  00000 100001
b31-26 b25-21 b20-16 b15-11 b10-6 b5-0
opcode    $rs      $rt    $rd  shamt function

3 registers: 2 source, 1 destination
operation: opcode and function

I-type: immediate

addi    $rt, $rs, immed  # add a constant to a register

001000 01000 01001  01010  00000 100001
b31-26 b25-21 b20-16 b15-0
opcode    $rs      $rt immediate

semantics: R[t] = R[s] + (IR15)
16::IR15-0

 - sign-extend the immediate value to 32 bits
 - add it (using signed addition) to register R[s]
 - store the result in register R[t]



Instruction formats: J-type

J-type: jump
  j       target  # jump to target address

000010 01000 01001  01010  00000 100001
b31-26 b25-0
opcode   target
semantics:

PC <- PC31-28 :: IR25-0 :: 00

update the PC by using:
 - upper 4 bits of the program counter
 - 26 bits of the target (lower 26 bits of instruction register)
 - two 0's
(creates a 32-bit address)

Why 2 0's?



Other instruction formats: non-MIPS

Other possible formats
older formats were designed to minimize the number of bits in an instruction
3-register format (MIPS)

addu    $r10,$r8,$r9

2-register format (CISC)
add2 $r1, $r2  

semantics: R[1] = R[1] + R[2] (like += in C)
same register used for source AND target
fewer bits necessary

1-register format (accumulator)
add1 $r2 

semantics: Acc = Acc + R[2]

accumulator: special register used to hold results, implicit in instruction
0-register format (stack)

add0

semantics:
Stack[Top-4] = Stack[Top] + Stack[Top-4]

Top = Top - 4

replace top of stack with sum of top 2 values
requires push and pop operations
must go back to memory to reuse value



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

