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The Polygonal Map 

n  PM Quadtree = “Polygonal Map” 
n  Similar to PR (Point Region) quadtree, 

but stores lines instead of points 
n  Ends up storing both (a line is defined 

by two points) 
n  Invented by Hanan Samet some time 

ago. 



PM Data Structure 

n  4-ary search trie 
n  Ordered (child 1 = NW, child 2 = NE, 

child 3 = SW, child 4 = SE) 
n  Key-space partition (internal nodes are 

guides) 
n  Like PR, consists of black, grey, and 

white nodes 



PM Nodes 

n  Black nodes: contains a data dictionary 
(a set) of geometric objects contained 
in this region of space (more later) 

n  Grey nodes: define the partitions in 
space – for PM Quadtrees, divides 
space into 4 equal areas (quadrants) 

n  White nodes: represent empty regions 
in space 



Tree Structure 
n  Partitions are same as PR Quadtree, except for 

handling when data lands on boundaries (later) 



PM quadtrees are not PR’s 

n  PM quadtrees can be partitioned by the 
location of line segment’s endpoints, 
but that’s not all 

n  PM designed to map polygons, so it 
stores line segments 

n  These line segments overlap more than 
one region in the tree 



Q-edges 

n  A big difference between PR quads and PM 
quads is that segments must be stored in every 
region they overlap 

n  Terminology: all line data in PM trees is called a 
“q-edge” (q = quadrant) 
n  Dr. Hugue says: “a q-edge is merely a term for a 

portion of a segment, restricted or clipped by a given 
partition, irrespective of the inclusion of its vertices” 

n  PM trees can be partitioned based on q-edges 



Example 
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PM# trees 

n  What’s a PM3, a PM2, a PM1? 
n  The “order” of the quadtree generally 

refers to how strict the rules are about 
what a black node can contain 

n  The result: stricter rules mean more 
partitions 

n  PM1 is the strictest 



PM3 Quadtrees 

n  Black nodes can contain: 
n  At most 1 dot (in other words, can only contain 

ONE endpoint) 
n  As many q-edges as it wants 
n  Q-edges are not allowed to intersect (demo linked 

from webpage is wrong!) 

n  Partitioning is the same as the PR quadtree – 
only challenge is adding q-edges to 
appropriate nodes, boundary cases different 



PM2 Quadtrees 

n  Black nodes can contain: 
n  At most 1 vertex 
n  One or more non-intersecting q-edges, all 

of which must share a common endpoint 



PM1 Quadtrees 

n  Black nodes can contain: 
n  EITHER: 

n  At most 1 vertex, and 1 or more q-edges, as 
long as the q-edges do not intersect and they 
all share the ndoe’s single vertex as one of 
their endpoints OR: 

n  At most 1 q-edge (this is actually exactly 1 
because a black node with 0 q-edges is a white 
node) 



PM1 seems hard to implement 

n  The rules imposed by the PM1 on black 
nodes can make insertion and removal 
difficult.  Here’s why: 
n  You have to detect line intersections, which 

may only occur very deeply in the tree 
(possibly after you’ve already partitioned and 
added the q-edge to other, shallower subtrees) 

n  Partitioning becomes tricky: may have to 
partition many, many times for a single insert 



Merging is fun 
n  When a line is removed, you may need 

to merge, because: 
n  The PM1 must be minimal at all times: 

if a grey node can be collapsed, it must 
be 

n  Merging transforms a grey node into a 
black node by collecting the dictionaries 
of all of the grey node’s children into a 
single dictionary 



But don’t worry… 

n  Despite how challenging the PM1 may 
be, students like you implement this 
beast every semester 

n  Not terrible if you’ve already dealt with 
PR Quadtrees. 

n  Let’s talk about some details of the 
PM1 



Logical questions 

n  What happens when a line’s endpoint 
falls on a partition boundary? 

n  What happens when a line is defined to 
fall exactly on a partition? 

n  What happens when an endpoint falls 
on a partition’s center (ex. 512,512) 

n  What happens when a line intersects a 
partition’s center? 



Answer: 

n  Insert the point or q-edge into all of the 
regions it touches! 

n  Let’s look at a nasty example… 



All Your Base Are Belong To Us 
(512,512) 

(256,256) (768,768) 

(384,384) (640,640) 

B 

AB 

BD 

A 

AB 

AC 

AD 

D 

AD 

BD 

CD 

AB AC AD CD 

A 

B 

C 

D

B 

AB 

BD 

B 

AB 

BD 

C 

AC 

CD 

C 

AC 

CD 

C 

AC 

CD 

B 

AB 

BD 

C 

AC 

CD 

AD BD 

A (256,768)  B (256,256)  C (768,768)  D (768,256) 



Other issues to consider 

n  When do you stop partitioning? 
n  Partitions can continue to occur within 

space constraints 
n  For our purposes it’s usually when the 

region’s area would be less than 1x1 
n  Even if endpoints are integers, lines can 

cross partitions at floating-point 
coordinates 

n  Geometric computations for the PM1 are 
floating-point based 



More issues 

n  How close is close enough? 
n  Two lines could be really, really close 

together (perhaps they differ by only 
10-10) – does that qualify as intersection 
or not? 

n  A maximum intersection distance can 
be defined as a way to stop partitioning 
(somewhat trickier than measuring 
partition width) 



What’s it good for? 

n  Obvious answer: nothing! 
n  But you’re wrong 

n  According to Samet: 
n  Determination of the identity of the region 

in which a point lies (duh) 
n  Determination of the boundaries of all 

regions lying within a given distance of a 
point (nearest segment to point) 

n  Overlaying two maps 



Asymptotic complexity 
n  Building the tree: 

n  According to Samet, the build time for adding 1 
edge at a time to a PM1 is: 

n  (E * 3 + L* 2DMAX+1) * (DMAX + A) 
n  E = number of edges to add to the map 
n  L = size of the perimeter of the largest area 
n  DMAX = maximum depth of the tree (for a 1024 grid with 

1x1 smallest regions, this is 10 – in general this is  
 log2(B) - log2(C)  

n  B is the size of one side of the grid) 
n  C is the square root of the smallest allowable region’s 

area (usually ≤ 1) 
n  A = cost of inserting edge into data dictionary 



Asymptotic analysis, con’t 

n  Very robust analysis, but if you’re thinking in 
big O notation, n = E, number of edges 

n  The build is linear according to Samet – O(n) 
n  Better than a SkipList or a TreeMap, which is O(n 

log n) 

n  Remember: the logarithmic component of a 
PM is not based on n, it’s based on an 
external (constant) factor.  This is because 
it’s a search trie with fixed maximum depth. 

 



But… 

n  Look at those constants: huge! 
n  For a 1024 grid, let’s crunch the numbers (A 

is negligibly small) 
n  DMAX = 10, so: 

n  (E * 3 + L* 2DMAX+1) * (DMAX + A) 

n  (30E + 4*1024*2048*(10+0) = 30E + 83886080 
n  Yes, that’s 83,886,080! 
n  30 is larger than log n when n = 1,000,000 



How about a search?  
Remove? 
n  Locating a line in a PM1 

n  This is a fast operation – need to search down the tree to 
one endpoint, if endpoint exists, search for line in this black 
node’s data dictionary. 

n  Result: O(log E) 
n  Reliant on a θ(log n) structure used for data dictionaries 
n  It’s safe to use a linear structure like a List, but then it’s O(e) 

n  Remove: Samet himself won’t touch the analysis on 
this one.  “I leave this to you as an exercise.” 
n  My guess: Ω(log E), O(E) 
n  This might actually be θ(E) 



Finally… how to implement 
n  In previous projects, you’ve dealt with 

SortedMaps as data dictionaries 
n  PM Quadtrees are neither SortedMaps nor 

useful data dictionaries 
n  Too specific to be a general map: keys are always 

lines 
n  So what are they? 
n  They are built to perform certain operations 

quickly – remember Samet’s uses for a 
quadtree? 



About the nodes 

n  Unlike SkipList, you have at least two types of 
nodes in your PM  

n  Grey nodes will turn into black nodes and 
black nodes will turn into grey nodes (both 
can turn to white) 

n  How to deal with that? 
n  Give up now and drink yourself into oblivion 

n  The CMSC department highly recommends against this 



Grey to Black, vice versa 

Could make one single “node” type which 
has a flag, 
n  0 = white 
n  1 = grey 
n  2 = black 

n  Each node has a data dictionary and 
four children pointers 



But that’s bad 
n  Using one node class and a flag is the naïve 

and inefficient way 
n  May seem easier to code, but not really 

n  You waste lots of space.  A grey node 
doesn’t need a data dictionary and a black 
node doesn’t need children pointers. 

n  Also run the risk of calling inappropriate 
methods (i.e., calling methods designed for 
black nodes when the node is grey) 
n  Have to get around this by always checking flags 

at start of function – this makes bulky code.  
Dynamic method invocation is better. 



Another option 
n  Make an abstract node supertype, and make a black 

and a grey both extend this class 
n  abstract class 
n  interface 

n  Nice because no space is wasted, and better OO 
design.  Easier to debug, maybe easier to understand 

n  “Harder” to code 
n  Be prepared for lots of casts unless you’re a pro 

n  Don’t try a method call on a Node assuming it’s black or 
grey and catch an exception to tell you otherwise.  Throwing 
exceptions is very expensive (especially for flow control) 



Data types you need 

n  Need a way to represent q-edges 
n  Need a structure for a black node’s 

data dictionary 
n  Optional structures: 

n  Need a good way to represent regions (can 
be done many ways – more later) 

n  Need a way to represent partitions 
n  These two are potentially equivalent 



Q-edge  

n  Make sure whatever you use to 
represent a q-edge … 
n  extends java.awt.geom.Line2D.Float or 

java.awt.geom.Line2D.Double 

n  You don’t need to create your own 
class per se, unless edges can have 
extra information (such as names) 

 



Java’s awesome geometry 

n  Java’s great for PM quadtrees because 
all of the geometric primitives are 
implemented for you to use or extend 

n  More importantly, all of the 
computational geometry algorithms 
necessary are already done for you 

n  Especially nice: the intersects() 
functions 



Data dictionary 

n  For your black nodes’ data dictionaries, you 
need a set of some kind: 
n  Doesn’t need to be sorted since dictionaries are 

often small (fewer than 10 elements) 
n  Possibly only use one dictionary – in all PM trees, 

there can be only one point per region, so only 
need a list of edges and keep the point separate 

n  Edges can be Comparable (or use a Comparator) if 
you want to use fast, sorted structures (like 
TreeSet), but this is usually wasted overhead 



Representing partitions as 
grey nodes 
n  If you are brave, you don’t need to store anything at 

partitions – you can figure their center point out on 
the fly based on the level of the tree and the known 
min/max partition sizes (Krznarich does this) 

n  Samet precomputes his partitions; only a substantial 
cost reduction if maximal region’s area is not a 
power of 2, since bit shifting is practically free 
n  Same as storing center of partitions at grey nodes 

n  Other options: 
n  Store a point (center of the partition) 
n  Store 4 java.awt.geom.Rectangle2D.Float’s 



Learn to use exceptions 

n  Exceptions can help you tremendously 
on this project 

n  If you aren’t familiar with them, learn 
them – they are simple to use 

n  Great for signaling when a partition is 
attempted on a region that is already 
the minimum size (at least, that’s how 
I wrote my insert function …) 



Stuff to keep in mind 

n  In this project, you’re dealing with lots of 
binary partitioning (i.e., dividing by two) 
n  For ints, x/2 == x >> 1 

n  Yes, java has bitshift operators! 

n  For floats, x/2 == x*0.5 
n  Floating point multiplication is better than division 

n  javac probably makes this optimization 
automatically for you, but it’s good practice 
anyway 



n  This is a tree, and tree algorithms often 
look like this: 

n  But this doesn’t work in Java! 
 

Java is annoying 

public void BSTAdd(Node root, Object data) { 
 if (root == null) root = new Node(data); 
 else if (root.data.compareTo(data) < 0) 
  BSTAdd(root.left,data); 
 else BSTAdd(root.right,data); 

} 



Wrapping your reference 
 

public void add(Object data) {  
 Node[] n = new Node[] { this.root }; 
 BSTAdd(n,data) 
 this.root = n[0]; 

} 
public void BSTAdd(Node[] r, Object data) { 

 if (r[0] == null) r[0] = new Node(data); 
 else if (r[0].data.compareTo(data) < 0) 
  BSTAdd(r[0].left,data); 
 else BSTAdd(r[0].right,data); 

} 



Alternatively… 

n  Rather than use an array, you could also make 
a wrapper class with a single public data 
member 

n  Note: Java people will hate you for this – 
n  Adds unnecessary overhead (a few extra bytes and 

a few nanoseconds of access time) 
n  Also, this is not coding “the Java way” … it’s a 

hack 
n  Purists: use return statements exclusively, return an 

array of objects (Object[]) in place of a series of out 
parameters 



The right way 
n  The right design makes the PM Quadtree 

trivial to implement 
n  Yes, trivial 

n  Your PM Quadtree should contain some inner 
classes for its node types (grey, black, and 
white) 
n  Yes, white – you’ll see why briefly 

n  The PM Quadtree class itself is really just an 
interface for accessing the root node of the 
tree 

n  The nodes themselves perform all of the work 



A sample Node type 

n  Consider this Node interface 
public interface Node { 

public Node add(Geometry g, Point center, Number 
width, Number height) throws PMException; 
public Node remove(Geometry g, Point center, 
Number width, Number height); 
public boolean valid(); 

} 
 n  Notice the return types and the 

parameters of add and remove 



Return types explained 

n  The reason for the return type is to 
circumvent the need to try something 
like: 
n  void add(Node n, …) { n = new Node();} 
n  Node x = new Node(); add(x,…); 
n  Doesn’t work 

n  Instead: 
n  Node f(…) { return new Node(); } 
n  Node x = new Node(); x = f(…); 



The basic idea 
n  When add() is invoked on a grey node, the 

call to add() is forwarded to one or more of 
that grey node’s children 
n  For example, a line may need to be added to all 

four of the grey node’s children if it intersects the 
center point 

n  If the child is grey, the process is repeated 
n  If the child is black, the item you’re adding gets 

put into the child’s dictionary 
n  What happens if the node is partitioned? 
n  The black child becomes a grey child! 

n  If the child is white, the white node becomes a 
black child 



But the references may 
change… 
n  Say, for instance, your grey node has a Node[] to 

store its 4 children: 
n  Node[] children = new Node[4]; 

n  If you determine that the geometry you are trying to 
add to this grey node intersects child 0, you would 
write: 
n  children[0] = children[0].add(…) 

n  You may be reassigning the first child (in region 1), 
e.g. if that child was a black node that was just 
partitioned 

n  In that case, the black node’s add() method would 
return the resulting new grey node 



Add for the black node 

n  Adding geometry to the black node is 
simple: 
n  Insert the geometry into the dictionary, 

and then invoke valid() 
n  valid() examines the dictionary 
n  If valid() returns true, return this 
n  Otherwise, return a new grey node that is 

the result of partitioning this black node 



Add for the grey node 

n  For each child: 
n  If the geometry you’re trying to add 

intersects the child, assign the child to be 
the result of invoking add on that child, for 
example: 

n  children[0] = children[0].add(…) 

n  Otherwise do nothing 

n  Always return this 



Add for the white node 
n  You may find it useful to implement a white 

node class 
n  When a grey is first created, all children are 

initially white 
n  When add() is invoked on a white node, it 

just returns a new black node containing the 
geometry to add 

n  If you implement a white node, make it a 
singleton class… 



How to make a singleton class 
in Java 

n  Make the constructor protected or private, 
and provide a public static instance: 

n  Access the singleton: Singleton.instance 
public class Singleton { 

 public static final Singleton 
 instance = new Singleton(); 

 private Singleton() {} 

} 

 



Remove is similiar 
n  For black nodes, if the last item is removed, return 

the singleton white node, otherwise return this 
n  For grey nodes, after calling remove() on the 

appropriate children, always check if its children 
can be merged or if it’s still necessary  
n  e.g., has more than one black or grey node 
n  If the grey is still necessary, return this 
n  Otherwise, return the new merged black node or return 

its only remaining black node 
n  For white nodes, if you ever call remove() on 

them your code is buggy, so throw an exception 



What to do if something goes 
wrong… 

n  Consider this code: 
 public static int f() { throw new RuntimeException(); } 
 int x = 0; 

 int y = 5; 

 try { x = f(); y = 7; } catch(Exception e) {} 

n  What happens? 
n  x stays 0, y stays 5 
n  Can use similar idea when partitioning a black node 
n  If there’s an intersection with existing geometry or if 

the partition goes too deep, throw an exception 



However… 
n  This requires some backtracking 
n  If child 1, 2, and 3 succeed but child 4 throws 

an exception, you’ll need to undo the add 
action 

n  Sufficient to simply call remove() on the 
offending geometry if add() fails 

n  Obviously, this requires remove() also be 
implemented 

n  remove() is as easy as add() under this 
design 



Alternatively… 
n  Some people like to do a prescan of the tree to test 

for problems before they insert to avoid having to call 
remove 
n  You can tell a priori if a partition will be too deep based on 

the proximity of the geometry you’re adding to pre-existing 
geometry 

n  You can easily detect intersections 
n  However, this is costly: a prescan method might be 

less expensive than remove, but you’re calling 
prescan every single time you add 

n  By cleaning up only when an error has occurred, you 
are only doing extra work when the input is bad 



A detail to keep in mind 
n  If you choose to throw exceptions when things go wrong 

with the intention of catching those exceptions and then 
executing some code, this practice is called exceptions for 
flow-control 

n  This is bad practice because exceptions are expensive 
n  However -- Throwing an exception isn’t expensive; 

creating one is, because a stack trace is created and 
during that creation the JVM needs to halt. 

n  Since you don’t care about the stack trace when using 
exceptions for flow control, you can make a static member 
variable of type Throwable in your PM Quadtree and 
always throw that instead of throw new Exception() 



And always… 

n  If you feel uncomfortable with the PM1 
quadtree, there are: 
n  Pages and pages about them in Samet’s book 
n  Pascal pseudo-code by Samet 

n  If you translate his Pascal, line for line, into Java: 
 “Public flogging is the only answer.” 
   -- Bobby Bhattacharjee 

n  Office hours 
n  Keeps your friendly TAs entertained while sitting through 

obligatory office hours 



Final thoughts 

Thank you, Hanan Samet! 
“I leave this to you as an exercise.” 

Take care of yourself, and each other. 


