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Visitor: Implementing Analyses

• Often want to implement multiple analyses on the
same kind of object data
– Book example: computing with Menus
– Project example: Generating code for and analyzing an

Abstract Syntax Tree (AST) in a compiler

• One solution: implement each analysis as a
method in each object
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Abstract Syntax Trees

public interface Node { }

public class Number extends Node {
  public int n;
}

public class Plus extends Node {
  public Node left;
  public Node right;
}
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Traversing Abstract Syntax Trees

public interface Node {
  public int sum();
}
public class Number extends Node {
  public int n;
  public int sum() { return n; }
}
public class Plus extends Node{
  public Node left;
  public Node right;
  public int sum() { return left.sum() +

right.sum(); } }
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Naïve approach (not a visitor)

One method
for each
analysis
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Tradeoffs with this Approach

• Follows idea “objects are responsible for themselves”

• But many analyses will occlude the object’s main code

• Result is classes that are hard to maintain
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Use a Visitor

• Alternatively, can define a separate visitor class
– A visitor encapsulates the operations to be performed

on an entire structure, e.g., all elements of a parse tree

• Allows operations to be separate from structure
– But doesn’t necessarily require putting all of the

structure traversal code into each visitor/operation
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Sample Visitor class
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How to perform traversal?

• Now that we have a visitor class, how do we apply
its analysis to the objects of interest?
– Add accept(visitor) method to each structure class, that

will invoke the given visitor on this
– Builds on Java’s dynamic dispatch
– Use an iteration algorithm (like an Iterator) to call

accept() on each relevant object
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Sample visited objects
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Vistor Interaction
aNodeStructure aAssignmentNode aVariableRefNode aTypeCheckingVisitor

Accept
(aTypeChecking
Visitor)

VisitAssignment(aAssignmentNode)

VisitVariableRef
(aVariableRefNode)

Accept (aTypeCheckingVisitor)

someOperation()

someOperation()
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Sample Visitor Class

public interface Visitor {
  public void visitNumber(Number n);
  public void visitPlus(Plus p);
}

public class SumVisitor implements Visitor {
  int sum;
  public void visitNumber(Number n) { sum += n; }
  public void visitPlus(Plus p) {
    p.left.accept(this);
    p.right.accept(this);
}
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Change to AST Classes

public interface Node {
  public void accept(Visitor v);
}

public class Number extends Node {
  …
  public void accept(Visitor v) {v.visitNumber(this);}
}
public class Plus extends Node {
  …
  public void accept(Visitor v) {v.visitPlus(this);}
}
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Visitor pattern

• Name
– Visitor or double dispatching

• Applicability
– Related objects must support different operations and

actual op depends on both the class and the op type
– Distinct and unrelated operations pollute class defs
– Key: object structure rarely changes, but ops changed

often
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Visitor Pattern Structure

• Define two class hierarchies
– One for object structure

• AST in compiler, Menus and MenuItems in book example

– One for each operation family, called visitors
• One for typechecking, code generation, pretty printing in compiler
• One for printing menus, figuring out the per/item average cost, etc.
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Structure of Visitor Pattern



17

Visitor Pattern Consequences

• Adding new operations is easy
– Add new op subclass with method for each concrete elt class
– Easier than modifying every element class

• Gathers related operations and separates unrelated ones
• Adding new concrete elements is difficult

– Must add a new method to each concrete Visitor subclass
• Allows visiting across class hierachies

– Iterator needs a common superclass (i.e., composite pattern)
• Visitor can accumulate state rather than pass it as

parameters
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Double-Dispatch

• Accept code is always trivial
– Just dynamic dispatch on argument, with runtime type

of structure node taking into account in method name
• A way of doing double-dispatch

– Traversal routine takes two arguments, the visitor and
the object to traverse

• o.accept(aVisitor) will dispatch on the actual identity of o (the object
being considered)

• ...and accept will internally dispatch on the identity of aVisitor (the
object visiting it)



19

Using Overloading in a Visitor

• You can name all of the visitXXX(XXX x)
methods just visit(XXX x)
– Calls to Visit (AssignmentNode n)

and Visit(VariableRefNode n) distinguished by
compile-time overload resolution
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Visitors Can Forward Common Behavior

• Useful for composites
– If subclasses of a particular object all treated the same
– Can have visit(SubClass) call visit(SuperClass)

• For example
– visit(BinaryPlusOperatorNode)

 can just forward call to superclass
visit(BinaryOperatorNode)
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State in a Visitor Pattern

• A visitor can contain state
– E.g., the results of typechecking the program so far

class TypeCheckingVisitor extends Visitor {
  private TypeMap map;
  void visit(VariableDefNode n) { …
    map.add(n,t)
  … }
}

• Or visitors pass around a separate state object
– Impacts the type of the Visitor superclass
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Implementing Traversal

• Who is responsible for traversing object structure?
• Plausible answers:

– Visitor
• But, must replicate traversal code in each concrete visitor

– Object structure
• Define operation that performs traversal while applying visitor object

to each component

– Iterator
• Iterator sends message to visitor with current element as arg
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Traversals

• It’s sometimes preferable to try to keep traversal separate
from the Visitor
– E.g., use an Iterator
– Thus traversal and analysis can evolve independently

• But can also do it within node or visitor class.  Several
solutions here:
– acceptAndTraverse methods

• traverse from within accept()

– Separating processing from traversal
• Visit/process methods

– Traversal visitors applying an operational visitor
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Accept and Traverse Example

• Class BinaryPlusOperatorNode {
void accept(Visitor v) {

v.visit(this);
lhs.accept(v);
rhs.accept(v);
}

…}
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acceptAndTraverse Methods

• Accept method could be responsible for traversing
children
– Assumes all visitors have same traversal pattern

• E.g., visit all nodes in pre-order traversal

– Could provide previsit and postvisit methods to allow
for more complicated traversal patterns

• Still visit every node
• Can’t do out of order traversal
• In-order traversal requires inVisit method
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Visitor/Process Methods

• Can have two parallel sets of methods in visitors
– Visit() methods
– Process() methods

• How it works: the visit() method on a node:
– Calls process() method of visitor, passing node as an

argument
– Calls accept() on all children of the node (passing the

visitor as an argument)
• Allows finer-grained subtyping of Visitor classes

that include traversal
– Subclass a visitor, and just change the process method



27

Preorder Visitor

• Class PreorderVisitor {
void visit(BinaryPlusOperatorNode n) {

process(n);
n.lhs.accept(this);
n.rhs.accept(this);
}

…}
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Visit/Process, Continued

• Can define a PreorderVisitor
– Extend it, and just redefine process method

• Except for the few cases where something other than preorder
traversal is required

• Can define other traversal visitors as well
– E.g., PostOrderVisitor
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Traversal Visitors Applying an
Operational Visitor

• Define a Preorder traversal visitor
– Takes an operational visitor as an argument when

created
• Perform preorder traversal of structure

– At each node
• Have node accept operational visitor
• Have each child accept traversal visitor
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PreorderVisitor with Payload

• Class PreorderVisitor {
Visitor  payload;
PreorderVisitor(Visitor p) { payload = p; }
void visit(BinaryPlusOperatorNode n) {

payload.visit(n);
n.lhs.accept(this);
n.rhs.accept(this);
}

…}


