
1

CMSC 433: Programming
Paradigms and Technologies

Spring 2006

Java and Java Generics
(slides partially developed by Jeff Foster for CS330)

CMSC 433, Spring 2006 2

Java

• Developed in 1995 by Sun Microsystems
– Started off as Oak, a language aimed at software for

consumer electronics
– Then the web came along...

• Java incorporated into web browsers
– Java source code compiled into Java byte code
– Executed (interpreted) on Java Virtual Machine

• Portability to different platforms
• Safety and security much easier, because code is not

directly executing on hardware

• These days, Java used for a lot of purposes
– Server side programming, general platform, etc.

2

CMSC 433, Spring 2006 3

Java Versions

• Java has evolved over the years
– Virtual machine quite stable, but source language

has been getting new features

• Will use Java 1.5 (a.k.a Java 5.0) for this class
– We will be using 1.5-specific features, so if you’ve got

a different version, you will want to upgrade
– Some of the new features in Java 1.5 came as a

response to pressure from Microsoft’s C#

CMSC 433, Spring 2006 4

Object-Orientation

• Java is a class-based, object-oriented language
• Classes extend other classes to inherit

– The root of the inheritance hierarchy is Object
– Why have a root of the hierarchy?

• Classes also implement interfaces
– Interface is like a class with declarations but no code

• Classes may extend one other class, but can
implement many interfaces
– Multiple inheritance is tricky to understand/implement

3

CMSC 433, Spring 2006 5

Subtyping

• Both inheritance and interfaces allow one class
to be used where another is specified
– This is really the same idea: subtyping

• We say that A is a subtype of B if
– A extends B or a subtype of B, or
– A implements B or a subtype of B

CMSC 433, Spring 2006 6

Liskov Substitution Principle
If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is substituted for
o2 then S is a subtype of T.

– I.e, if anyone expecting a T can be given an S, then
S is a subtype of T.

– Does our definition of subtyping in terms of extends
and implements obey this principle?

4

CMSC 433, Spring 2006 7

Polymorphism in Java

• Subtyping is a kind of polymorphism
– Sometimes called subtype polymorphism
– Allows method to accept objects of many types

• Another kind: parametric polymorphism
– Implemented as generic methods in Java

• Ad-hoc polymorphism is overloading
– Method overloading

CMSC 433, Spring 2006 8

A Stack of Integers
class IntegerStack {
 class Entry {
 Integer elt; Entry next;
 Entry(Integer i, Entry n) { elt = i; next = n; }
 }
 Entry theStack;
 void push(Integer i) {
 theStack = new Entry(i, theStack);
 }
 Integer pop() throws EmptyStackException {
 if (theStack == null)
 throw new EmptyStackException();
 else {
 Integer i = theStack.elt;
 theStack = theStack.next;
 return i;
 }}}

5

CMSC 433, Spring 2006 9

Inner Classes

• Classes can be nested inside other classes
– These are called inner classes

• Within a class that contains an inner class, you
can use the inner class just like any other class

CMSC 433, Spring 2006 10

Referring to Outer Class
 class Stack {
 ...
 private int numEntries;
 class Entry {
 Integer elt; Entry next;
 Entry(Integer i) { elt = i; next = null;
 numEntries++; }
 }
 }

• Each inner “object” has an implicit reference to
the outer “object” whose method created it
– Can refer to fields directly, or use outer class name

6

CMSC 433, Spring 2006 11

Other Features of Inner Classes

• Outside of the outer class, use outer.inner
notation to refer to type of inner class
– E.g., Stack.Entry

• An inner class marked static does not have a
reference to outer class
– Can’t refer to instance variables of outer class
– Must also use outer.inner notation to refer to inner

class

• Question: Can Stack.Entry be made static?

CMSC 433, Spring 2006 12

Compiling Inner Classes

• The JVM doesn’t know about inner classes
– Compiled away, similar to generics
– Inner class Foo of outer class A produces

A$Foo.class
– Anonymous inner class of outer class A produces

A$1.class
• We’ll see these later

• Why are inner classes useful?

7

CMSC 433, Spring 2006 13

IntegerStack Client

IntegerStack is = new IntegerStack();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = is.pop();

• This is OK, but what if we want other kinds of
stacks?
– Need to make one XStack for each kind of X
– Problems: Code bloat, maintainability nightmare

CMSC 433, Spring 2006 14

Polymorphism Using Object
class Stack {
 class Entry {
 Object elt; Entry next;
 Entry(Object i, Entry n) { elt = i; next = n; }
 }
 Entry theStack;
 void push(Object i) {
 theStack = new Entry(i, theStack);
 }
 Object pop() throws EmptyStackException {
 if (theStack == null)
 throw new EmptyStackException();
 else {
 Object i = theStack.elt;
 theStack = theStack.next;
 return i;
 }}}

8

CMSC 433, Spring 2006 15

Stack Client

Stack is = new Stack();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = (Integer) is.pop();

• Now Stacks are reusable
– push() works the same
– But now pop() returns an Object

• Have to downcast back to Integer
• Not checked until run-time

CMSC 433, Spring 2006 16

General Problem

• When we move from an X container to an
Object container
– Methods that take X’s as input parameters are OK

• If you’re allowed to pass Object in, you can pass any X in

– Methods that return X’s as results require downcasts
• You only get Objects out, which you need to cast down to X

• This is a general feature of subtype
polymorphism

9

CMSC 433, Spring 2006 17

Parametric Polymorphism (for Classes)

• In Java 1.5 we can parameterize the Stack
class by its element type

• Syntax:
– Class declaration: class A<T> { ... }

• A is the class name, as before
• T is a type variable, can be used in body of class (...)

– Client usage declaration: A<Integer> x;
• We instantiate A with the Integer type

CMSC 433, Spring 2006 18

class Stack<ElementType> {
 class Entry {
 ElementType elt; Entry next;
 Entry(ElementType i, Entry n) { elt = i; next = n;

}
 }
 Entry theStack;
 void push(ElementType i) {
 theStack = new Entry(i, theStack);
 }
 ElementType pop() throws EmptyStackException {
 if (theStack == null)
 throw new EmptyStackException();
 else {
 ElementType i = theStack.elt;
 theStack = theStack.next;
 return i;
 }}}

Parametric Polymorphism for Stack

10

CMSC 433, Spring 2006 19

Stack<Element> Client

Stack<Integer> is = new Stack<Integer>();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = is.pop();

• No downcasts
• Type-checked at compile time
• No need to duplicate Stack code for every usage

CMSC 433, Spring 2006 20

Parametric Polymorphism for Methods
• String is a subtype of Object

1. static Object id(Object x) { return x; }
2. static Object id(String x) { return x; }
3. static String id(Object x) { return x; }
4. static String id(String x) { return x; }

• Can’t pass an Object to 2 or 4
• 3 doesn’t type check
• Can pass a String to 1 but you get an Object back

11

CMSC 433, Spring 2006 21

Parametric Polymorphism, Again

• But id() doesn’t care about the type of x
– It works for any type

• So parameterize the static method:
static <T> T id(T x) { return x; }
Integer j = id(new Integer(3));

– There’s no need to explicitly instantiate id; compiler
figures out the correct type.

• In contrast, consider
List<Integer> list = new ArrayList<Integer>();

CMSC 433, Spring 2006 22

Standard Library, and Java 1.5

• Part of Java 1.5 (called “generics”)
– Comes with replacement for java.util.*

• class LinkedList<A> { ...}
• class HashMap<A, B> { ... }
• interface Collection<A> { ... }

• But they didn’t change the JVM to add generics
– So how does that work?
– Will answer this question shortly.

12

CMSC 433, Spring 2006 23

Subtyping for Generics
• Is Stack<Integer> a subtype of Stack<Object>?

– The following code seems OK:

• But I’m not allowed to call count(x) where x has type
Stack<Integer>

• Let’s a take a step back and consider arrays …

int count(Collection<Object> c) {
 int j = 0;
 for (Iterator<Object> i = c.iterator(); i.hasNext();) {
 Object e = i.next(); j++;
 }
 return j;}

CMSC 433, Spring 2006 24

Subtyping and Arrays

• Java has a subtyping “feature”:
– If S is a subtype of T, then
– S[] is a subtype of T[]

• Lets us write methods that take arbitrary arrays
 public static void reverseArray(Object [] A) {

 for(int i=0, j=A.length-1; i<j; i++,j--) {
 Object tmp = A[i];
 A[i] = A[j];
 A[j] = tmp;
 }

 }

13

CMSC 433, Spring 2006 25

Problem with Subtyping Arrays

• Program compiles without warning
• Java must generate run-time check at (1) to prevent (2)

– Type written to array must be subtype of array contents

public class A { ... }
public class B extends A { void newMethod(); }
...
 void foo(void) {
 B[] bs = new B[3];
 A[] as;

 as = bs; // Since B[] subtype of A[]
 as[0] = new A(); // (1)
 bs[0].newMethod(); // (2)
 }

CMSC 433, Spring 2006 26

Solution I: Use Polymorphic Methods

• But requires a “dummy” type variable that isn’t really
used for anything

• Only works for methods, which can instantiate the type
differently at each call site.
– What should Class.forName(String) return?

<T> int count(Collection<T> c) {
 int j = 0;
 for (Iterator<T> i = c.iterator(); i.hasNext();) {
 T e = i.next(); j++;
 }
 return j;}

14

CMSC 433, Spring 2006 27

Solution II: Wildcards

• Use ? as the type variable
– Collection<?> is “Collection of unknown”

• Why is this safe?

int count(Collection<?> c) {
 int j = 0;
 for (Iterator<?> i = c.iterator(); i.hasNext();) {
 Object e = i.next(); j++;
 }
 return j; }

CMSC 433, Spring 2006 28

Legal Wildcard Usage
• Reasonable question:

– Why is Stack<Integer> not a subtype of Stack<Object>, but
Stack<Integer> is a subtype of Stack<?>? In both cases, I have
to cast the Stack’s elements to type Object.

• Answer:
– Loosely speaking: wildcards permit reading but not writing.
– In general, if a generic class C is declared as

 class C<T> { … }

– When called on a C<?>, methods that return T can have these
values cast to Object, but a method that takes T as an argument
can only be given null.

15

CMSC 433, Spring 2006 29

Example: Can read but cannot write
int count(Collection<?> c) {
 int j = 0;
 for (Iterator<?> i = c.iterator(); i.hasNext();) {
 Object e = i.next();
 c.add(e); // fails: Object is not ?
 j++;
 }
 return j; }

CMSC 433, Spring 2006 30

More on Generic Classes

• Suppose we have classes Circle, Square, and
Rectangle, all subtypes of Shape

– Can we pass this method a Collection<Square>?
• No, not a subtype of Collection<Shape>

– How about the following?

void drawAll(Collection<Shape> c) {
 for (Shape s : c)
 s.draw();
}

void drawAll(Collection<?> c) {
 for (Shape s : c)
 s.draw();
}

// not allowed

16

CMSC 433, Spring 2006 31

Bounded Wildcards

• We want drawAll to take a Collection of anything
that is a subtype of shape

– This is a bounded wildcard
– We can pass Collection<Circle>
– We can safely treat e as a Shape

void drawAll(Collection<? extends Shape> c) {
 for (Shape s : c)
 s.draw();
}

CMSC 433, Spring 2006 32

Bounded Wildcards (cont’d)

• Should the following be allowed?

– No, because c might be a Collection of something
that is not compatible with Circle

– This code is forbidden at compile time

void foo(Collection<? extends Shape> c) {
 c.add(new Circle());
}

17

CMSC 433, Spring 2006 33

Lower Bounded Wildcards (cont’d)

• But the following is allowed?

– Because c is a Collection of something that always
compatible with Circle

void foo(Collection<? super Circle> c) {
 c.add(new Circle());
 c.add(new Shape()); // fails
}

CMSC 433, Spring 2006 34

public interface Comparable<T> {
 int compareTo(T o);
}
// e.g., Boolean implements Comparable<Boolean>

public static <T extends Comparable<? super T>>
 void sort(List<T> list) {
 Object a[] = list.toArray();
 Arrays.sort(a);
 ListIterator<T> i = list.listIterator();
 for(int j=0; j<a.length; j++) {
 i.nextIndex();
 i.set((T)a[j]);
 }
 }

A more realistic example

• I’m modifying the list via the Iterator. Why is this OK?

18

CMSC 433, Spring 2006 35

Bounded Type Variables

• You can also add bounds to regular type vars

– This method can take a List of any subclass of Shape
• This addresses some of the reason that we decided to

introduce wild cards. Once again, this only works for
methods; you could not declare a variable with this bound
without wildcards.

<T extends Shape> T getAndDrawShape(List<T> c) {
 c.get(1).draw();
 return c.get(2);
}

CMSC 433, Spring 2006 36

Bounding and Wildcards

• Our legal wildcard rule from earlier can be
refined to include bounds:
– In general, if a generic class C is declared as

 class C<T extends B> { … }

– When called on a C<?>, methods that return T can
have these values cast to B, but a method that takes
T as an argument can only be given null.

19

CMSC 433, Spring 2006 37

Exercise: Annotate Java Libraries

• Look at the Java 1.4 API, and figure out how
you would best annotate the following classes
– Collection
– Comparator
– Collections
– Class

– Look at others too!

CMSC 433, Spring 2006 38

Translation via Erasure

• Replace uses of type variables with Object
– class A<T> { ...T x;... } becomes
– class A { ...Object x;... }

• Add downcasts wherever necessary
– Integer x = A<Integer>.get(); becomes
– Integer x = (Integer) (A.get());

• Uh...so why did we bother with generics if
they’re just going to be removed?
– Because the compiler still did type checking for us
– We know that those casts will not fail at run time

20

CMSC 433, Spring 2006 39

Limitations of Translation
• Some type information not available at run-time

– Recall type variables T are rewritten to Object

• Thus, assuming T is type variable
– new T() would translate to new Object() (error)
– new T[n] would translate to new Object[n] (warning)
– Some casts/instanceofs that use T

• (Only ones the compiler can figure out are allowed)

• Also produces some oddities
– LinkedList<Integer>.class == LinkedList<String>.class

• (These are uses of reflection to get the class object)

CMSC 433, Spring 2006 40

Using with Legacy Code

• Translation via type erasure
– class A <T> becomes class A

• Thus class A is available as a “raw type”
– class A<T> { ... }
– class B { A x; } // use A as raw type

• Sometimes useful with legacy code, but...
– Dangerous feature to use, plus unsafe
– Relies on implementation of generics, not semantics

