Introduction

Reading

- for today finish Chapter 10
- for Thursday Active Messages & T3E paper
 - new link for T3E paper on web site
- delete Chapter 9 & 11 from reading
- Program #1 was returned

Cache Coherency (write through)

- Read only data cached
- Writeable values can be cached by one processor
 - a processor needs to gain write access
 - must force invalidation of other cached copies
 - all writes go back to main memory
 - reads can be served from cache for processor with write access

• Performance

- good for
 - updates and reads by same processor
- bad for
 - multiple updates by the same processor (many bus writes)

How to Manage Caches

Snooping

- each cache controller watches bus for "interesting" info
- may result in cache lines being invalidated if write seen
 - i.e. a write through cache
- limited by speed of cache controllers to watch the bus
 - must see everything to maintain correctness

Directories

- memory stores information about cached copies
- does not require each cache controller to snoop
- permits more scaleable interconnect networks

Directory Based Cache Controllers

- Requires additional circuits to maintain directories
- directories must be updated when a processors
 - starts caching a value
 - stops caching a value
 - changes from read to write caching (or back)
- each cache line has a directory entry
 - can use sparse schemes that only have entries for actively cached items
- can have several memory controllers in a machine
 - each manages a region of physical memory
 - bit vectors (one bit per processor)
 - addresses (several log₂n entries)

Representing Directories

• bit vectors

- one bit per processor
- uses lots of space for a large machine
- permits each processor to cache a value

addresses

- several entries for PE id (each entry is log_2 n bits)
- what happens if a processor wishes to cache, and all entries are full?
 - use a linked list of directories (SCI uses this approach)
 - use a "wildcard" and force a broadcast to invalidate

KSR-1

- COMA Cache Only Memory Architecture
- second level cache replaces main memory
 - called the "all cache" design
 - cache line size is 128 bytes

Interconnect is a "ring of rings"

- first level ring
 - 32 processors
 - ARD Allcache Routing and Directory cell
- second level ring
 - 1,2,4 GB/sec
 - moves cache lines between rings
- ARD
 - full directory of all lines on its ring
 - forwards requests from nodes in its ring

• forwards requests for lines stored on its ring CMSC 818Z - S99 (lect 10) copyright 1999 Jeffrey K. Hollingsworth

KSR-1 (cont.)

Processor

- custom designed 64 bit microprocessor
 - a big mistake never could keep pace with technology
 - needed 64 bits since memory is large
- 20 MIPS per processor, superscalar design
- FPU supports chained multiply/add instructions

• OS

- OSF-1
- uses shared memory so footprint is not as large as Paragon
- extensive used of thread based programming model

Stanford Dash

Structure

- collection of bus based multi-processors
- interconnect network and cache controller connect nodes

Cache System

- snoopy protocol within in a single SMP node
- directory based cache controller between nodes
 - misses on local cluster go to home cluster of memory "owner"
 - owner may have current copy or could be cached on another cluster

Processors

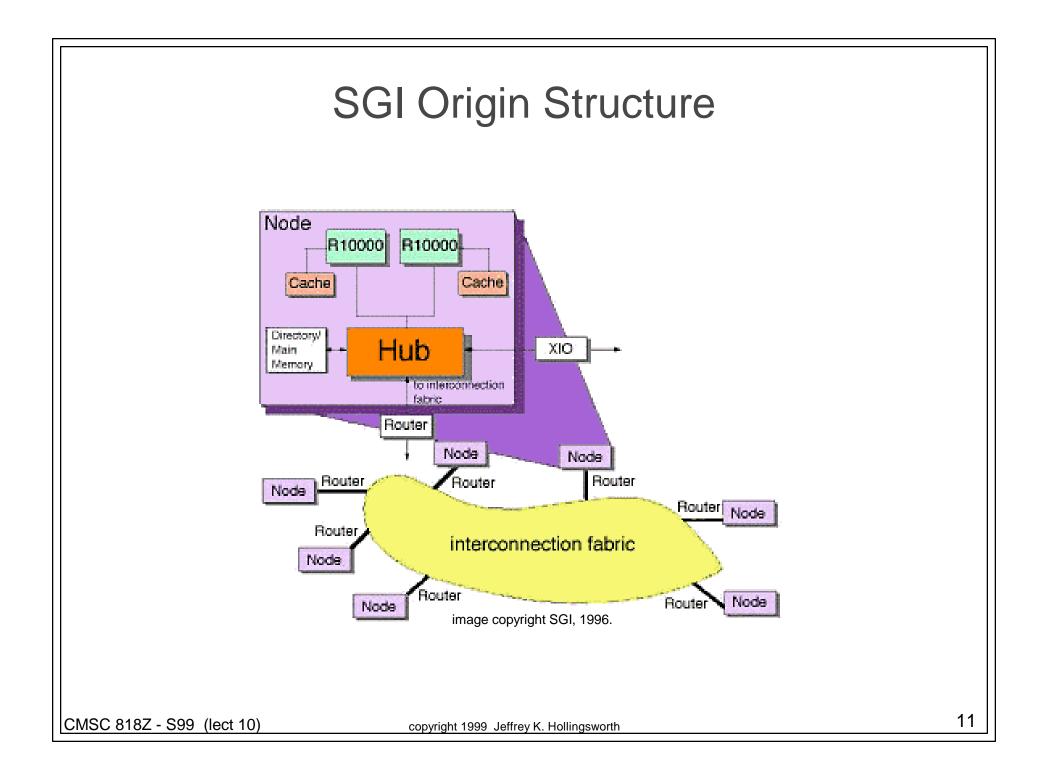
- 4 MIPS R3000 (33 Mhz) per node

Interconnect

2 dimensional mesh

CMSC 818Z - S99 (lect 10)

copyright 1999 Jeffrey K. Hollingsworth


Stanford Dash (cont.)

• Performance

- level 0 cache (1 clock)
- remote clutser load (132 clocks)
- New Directions
 - FLASH
 - use a full micro-processor for the cache controller
 - permits customization of cache protocols
 - makes the hardware simpler

SGI Origin Servers

- Commercialization of Stanford DASH
 - SMP nodes
 - directory based cache controller
- Changes
 - processors are R10000
 - only 2 nodes per bus
 - slightly cheaper bus than DASH
 - faster processors require more bus bandwidth
 - interconnection network
 - hypercube (to 32 nodes)
 - re-configurale routers beyond

Cray T3D

• Globally accesable memory

- each node has is own private memory
- can read/write the memory of other nodes
 - no cache coherency is provided

Processors

- Alpha: 64 bit processors
- added extra prefetch hardware
 - just off processor circuit
 - permits requests for memory in advance of need

Interconnect

- 3 dimension torus
- support scatter/gather operations with "address centrifuge"

OS

slave micro-kernel on nodes

CMSC 818Z - S99 (lect 10)

Tera

Uses threading to hide latency

- descendent of HEP
- rapid hardware context switching
 - if a cache miss occurs, switch threads
- similar do dataflow
 - ready values drive execution
 - however, but programming model is threaded von Neuman
- Interconnect is 3-D mesh
 - processors, memory, and I/O devices are all on the mesh

Processors

- fully custom (using GaS technology)
- superscalar
- instructions include a count of the number insns that follow that do not depend on the current instruction