
1CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Introduction

l Reading
– for today Chapter 10 (skip dataflow)
– for Tuesday finish Chapter 10
– for next Thursday Active Messages & T3E paper

• new link for T3E paper on web site
– delete Chapter 9 & 11 from reading

l Please email me the class you would like to lead
discussion
– only have about three volunteers now

2CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Fat Trees

l adds extra bandwidth near the root
– improves bi-section bandwidth
– can use more hardware or faster clock rates
– TMC CM-5 and Meiko CS-2 are examples of this design
– can choose not to fully scale any any level (for cost savings)

3CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Combining

l Try to reduce hot spots in a communication network
– combine requests for the same location

• really cache line

l Use topology of the network to match comm ops
– broadcast

• flood network - everyone sends to everyone else
• form a broadcast tree

– reduction
• put arithmetic operations into switches
• CM-5 fast hardware for and,or,min,max

4CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

MIMD
l Replicate Processor

– can use commodity parts

l Shared vs. Private Memory
– shared memory permits any programming model

• can share data as desired
• can build message passing using shared buffers

– private memory is cheaper
• no expensive interconnect to build
• interconnect is only to communicate shared info

l Grain Size
– larger then SIMD machines
– macro dataflow

• parts of large datasets flow: (A-1 x B x AT)-1

– macro pipeline
• cpp | compile | as | ld

5CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Message Passing Machines

l Network of Workstations (NOW)
– use normal LANs (TCP/IP or custom protocols)
– message passing libraries (PVM, Express, or MPI)
– cheap to build
– communication bandwidth and latency are poor

l Hypercubes
– Examples: Cosmic Cube and Intel IPSC and IPSC/860
– original didn’t have hardware message forwarding
– recent systems have included hardware routers
– how much OS is required

• just enough to send messages?
• what about resource allocation?

– do you need/get a sub-cube?
• how about tools: debugging performance measurement

6CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Message Passing Machines (cont.)

l Intel Paragon
– mesh connected machine (2-d mesh)
– i860 processors

• 75 Mflops
• can issue one multiple and one add per cycle

– communication
• 200 MB/sec bandwidth (per link)
• second i860 used for communication (shares memory)

– memory
• 16-128 MB/node
• OS takes over 1MB/node

– for 1,000 nodes that a giga-kernel

7CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

CM-5

l interconnection network
– fat tree
– combining network for data reduction (fast barrier)
– 20MB/sec local 5MB/sec arbitrary
– 30usec latency for messages

l processors
– SPARC processors
– 4 Vector units per node (128Mflops/node)
– systems up to 1024 nodes have been delivered

8CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Message Passing Machines (cont.)

l SP-2
– processors

• IBM power II
• 65Mhz (330 Mhz Now)
• 125 Mflops per processor

– Entire UNIX workstation is used
• each runs a full UNIX operating system
• POE Environment sits on top to provide parallel access

– individual nodes can be allocated
– Network

• MCA (now PCI) plug in card
• omega network of 8x8 cross bar switches
• 40 MB/second (now 120MB/sec)

9CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Bus based Multiprocessors

l biggest commercial success of parallel computing
l limited number of processors can share a single bus
l use caches to keep the bus traffic lower

– the cache is useful even if it is not that much faster than
main memory

– caches act as private memory to reduce bus requests

l Cache coherency
– need to ensure that each processor get latest version of data
– how soon does a processors sees changes by other

processors is a design parameter
• by the next instruction “sequential consistency”
• by the next synchronization operation “released

consistency”

10CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Basic Structure of Bus-based SMP

Memory

Cache
Controller

Cache
Controller

Cache
Controller

Cache
Controller

PE PEPEPE

11CMSC 818Z - S99 (lect 9) copyright 1999 Jeffrey K. Hollingsworth

Cache Coherency (simple)

l Read only values are cached
l Writeable values

– not cached, all reads and writes go to main memory
– good performance for frequently updated values

• if many processors update the same location
– poor performance for

• many updates by the same processor
• infrequent updates and frequent writes

l Who marks regions for caching?
– static: compiler marks shared writeable areas
– dynamic: runtime support to change cachability of lines

• compiler emits code to change status
• user makes explicit calls

