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Announcements

l Programming Assignment #1 was handed out
– PVM Programming card is on the class web page

l OpenMP paper is available from Dept. Library
l Photos are now on the class Web Page

– See Dr. Hollingsworth for the username/password

l Reading
– Today 4.1 & PVM paper
– Thursday MPI & OpenMP
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Synchronization

l Semaphores
– Traditional uni-processor synchronization
– provide blocking wait
– generally require kernel support

• implies a kernel trap for each operation (expensive)
• can involve a full context switch

– very expensive (1000’s of instructions)

l Test-and-set
– Traditional uni-processor synchronization
– use busy wait
– very little kernel support

• just provide a shared region of memory
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Synchronization (cont.)

l Spin-locks
– really just an abstraction of test-and-set used for mutual

exclusion
– still use busy wait

l Hybrid spin and block
– spinning is great if the delay is “short”
– blocking is better if the delay is “long”
– hybrid is spin for a while

• if get the lock continue
• if time-out reached, then delay

– Key parameter is the cut over between spin and block
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Hybrid Spin Algorithms

l For Additional Information on this topic:
– A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, Empirical

Studies of Competitive Spinning for a Shared-Memory
Multiprocessor, in 13th ACM Symposium on Operating
System Principals, 1991.

– T. E. Anderson, “The Performance Implications of Spin-
Waiting Alternatives for Shared-Memory Multiprocessors”,
ICPP, 1989, pp. II:170-174.
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Barriers

l a set of processes k all leave the synchronization
region at once
– “at the same time” is hard in a parallel system
– sufficient that no process leaves until all process arrive

l can be expressed as a busy wait on shared memory
– hardware support: fetch-and-add instruction
– built from test-and-set instruction

• need to provide atomic update of the counter
– creates a memory hot spot for the count variable

• can design the memory system to avoid this
– use a cache update protocol
– processors spin on the cached value
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Barriers (cont.)

l can be built as a series of messages
– all processes send to a barrier coordinator
– use a tree to reduce the work of the coordinator

• each process combines logm n messages
• total messages is still O(n)
• need to scale network too

l are a instance of a general operation called a
reduction
– a commutative operator
– each process contributes a value
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Synchronization (cont.)

l Rendezvous
– defined as part of the language Ada
– two zero buffered send/receive pair
– each process blocks until the other arrives

l RPC
– tries to simulate a traditional procedure call interface
– sort of a language independent rendezvous

l Futures
– promise for data to be delivered in soon
– functions can return immediately a future
– program blocks if the data has not yet arrived and it is used
– sort of like a dataflow model, but at the language level
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PVM

l Provide a simple, free, portable parallel environment
l Run on everything

– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win*
– Works on a heterogenous collection of machines

• handles type conversion as needed

l Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)



9CMSC 818Z - S99  (lect 3) copyright 1999  Jeffrey K. Hollingsworth

PVM Environment (UNIX)
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l One PVMD per machine
– all processes communicate through pvmd (by default)

l Any number of application processes per node



10CMSC 818Z - S99  (lect 3) copyright 1999  Jeffrey K. Hollingsworth

PVM Message Passing

l All messages have tags
– an integer to identify the message
– defined by the user

l Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

l All proccess are named based on task ids (tids)
– local/remote processes are the same

l Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)
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PVM Process Control

l Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

l Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

l Info functions
– pvm_mytid() - get the process task id


