Announcements

® Programming Assignment #1 was handed out
— PVM Programming card is on the class web page

® OpenMP paper is available from Dept. Library
® Photos are now on the class Web Page
— See Dr. Hollingsworth for the username/password

® Reading
— Today 4.1 & PVM paper
— Thursday MPI & OpenMP

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Synchronization

® Semaphores
— Traditional uni-processor synchronization
— provide blocking wait
— generally require kernel support
* implies a kernel trap for each operation (expensive)
« can involve a full context switch
— very expensive (1000’s of instructions)
® Test-and-set
— Traditional uni-processor synchronization
— use busy wait
— very little kernel support
* just provide a shared region of memory

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Synchronization (cont.)

® Spin-locks
— really just an abstraction of test-and-set used for mutual
exclusion

— still use busy wait

® Hybrid spin and block
— spinning is great if the delay is “short”
— blocking is better if the delay is “long”
— hybrid is spin for a while
« if get the lock continue
* if time-out reached, then delay
— Key parameter is the cut over between spin and block

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Hybrid Spin Algorithms

@ For Additional Information on this topic:

— A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, Empirical
Studies of Competitive Spinning for a Shared-Memory
Multiprocessor, in 13th ACM Symposium on Operating
System Principals, 1991.

— T. E. Anderson, “The Performance Implications of Spin-
Waiting Alternatives for Shared-Memory Multiprocessors”,
ICPP, 1989, pp. I1:170-174.

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Barriers

® a set of processes k all leave the synchronization
region at once
— “at the same time” is hard in a parallel system
— sufficient that no process leaves until all process arrive

® can be expressed as a busy wait on shared memory
— hardware support: fetch-and-add instruction
— built from test-and-set instruction
* need to provide atomic update of the counter
— creates a memory hot spot for the count variable
» can design the memory system to avoid this
— use a cache update protocol
— processors spin on the cached value

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Barriers (cont.)

® can be built as a series of messages
— all processes send to a barrier coordinator
— use a tree to reduce the work of the coordinator
e each process combines log, n messages
 total messages is still O(n)
* need to scale network too

® are a instance of a general operation called a
reduction
— a commutative operator
— each process contributes a value

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




Synchronization (cont.)

® Rendezvous
— defined as part of the language Ada
— two zero buffered send/receive pair
— each process blocks until the other arrives

® RPC

— tries to simulate a traditional procedure call interface
— sort of a language independent rendezvous
® Futures
— promise for data to be delivered in soon
— functions can return immediately a future

— program blocks if the data has not yet arrived and it is used
— sort of like a dataflow model, but at the language level

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




PVM

® Provide a simple, free, portable parallel environment

® Run on everything
— Parallel Hardware: SMP, MPPs, Vector Machines
— Network of Workstations: ATM, Ethernet,
* UNIX machines and PCs running Win*
— Works on a heterogenous collection of machines
* handles type conversion as needed

® Provides two things
— message passing library
e point-to-point messages
» synchronization: barriers, reductions
— OS support
e process creation (pvm_spawn)

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




PVM Environment (UNIX)

°0 oe

Bus Network

IBM RS/6000 DECmmp 12000

® One PVMD per machine
— all processes communicate through pvmd (by default)

® Any number of application processes per node

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth




PVM Message Passing

® All messages have tags
— an integer to identify the message
— defined by the user

® Messages are constructed, then sent
— pvm_pk{int,char,float}(*var, count, stride)
— pvm_unpk{int,char,float} to unpack

® All proccess are named based on task ids (tids)
— local/remote processes are the same

® Primary message passing functions
— pvm_send(tid, tag)
— pvm_recv(tid, tag)

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

10




PVM Process Control

@ Creating a process
— pvm_spawn(task, argv, flag, where, ntask, tids)
— flag and where provide control of where tasks are started
— ntask controls how many copies are started
— program must be installed on target machine
® Ending a task
— pvm_exit
— does not exit the process, just the PVM machine
® Info functions
— pvm_mytid() - get the process task id

CMSC 8187 - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

11




