
1CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Announcements

l Programming Assignment #1 was handed out
– PVM Programming card is on the class web page

l OpenMP paper is available from Dept. Library
l Photos are now on the class Web Page

– See Dr. Hollingsworth for the username/password

l Reading
– Today 4.1 & PVM paper
– Thursday MPI & OpenMP

2CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Synchronization

l Semaphores
– Traditional uni-processor synchronization
– provide blocking wait
– generally require kernel support

• implies a kernel trap for each operation (expensive)
• can involve a full context switch

– very expensive (1000’s of instructions)

l Test-and-set
– Traditional uni-processor synchronization
– use busy wait
– very little kernel support

• just provide a shared region of memory

3CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Synchronization (cont.)

l Spin-locks
– really just an abstraction of test-and-set used for mutual

exclusion
– still use busy wait

l Hybrid spin and block
– spinning is great if the delay is “short”
– blocking is better if the delay is “long”
– hybrid is spin for a while

• if get the lock continue
• if time-out reached, then delay

– Key parameter is the cut over between spin and block

4CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Hybrid Spin Algorithms

l For Additional Information on this topic:
– A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki, Empirical

Studies of Competitive Spinning for a Shared-Memory
Multiprocessor, in 13th ACM Symposium on Operating
System Principals, 1991.

– T. E. Anderson, “The Performance Implications of Spin-
Waiting Alternatives for Shared-Memory Multiprocessors”,
ICPP, 1989, pp. II:170-174.

5CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Barriers

l a set of processes k all leave the synchronization
region at once
– “at the same time” is hard in a parallel system
– sufficient that no process leaves until all process arrive

l can be expressed as a busy wait on shared memory
– hardware support: fetch-and-add instruction
– built from test-and-set instruction

• need to provide atomic update of the counter
– creates a memory hot spot for the count variable

• can design the memory system to avoid this
– use a cache update protocol
– processors spin on the cached value

6CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Barriers (cont.)

l can be built as a series of messages
– all processes send to a barrier coordinator
– use a tree to reduce the work of the coordinator

• each process combines logm n messages
• total messages is still O(n)
• need to scale network too

l are a instance of a general operation called a
reduction
– a commutative operator
– each process contributes a value

7CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Synchronization (cont.)

l Rendezvous
– defined as part of the language Ada
– two zero buffered send/receive pair
– each process blocks until the other arrives

l RPC
– tries to simulate a traditional procedure call interface
– sort of a language independent rendezvous

l Futures
– promise for data to be delivered in soon
– functions can return immediately a future
– program blocks if the data has not yet arrived and it is used
– sort of like a dataflow model, but at the language level

8CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM

l Provide a simple, free, portable parallel environment
l Run on everything

– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win*
– Works on a heterogenous collection of machines

• handles type conversion as needed

l Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)

9CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Environment (UNIX)

Application
Process

Bus Network

PVMDPVMD

PVMDPVMD

PVMD

Application
Process

Application
Process

Application
ProcessApplication

Process

Sun SPARC Sun SPARC

IBM RS/6000 Cray Y-MPDECmmp 12000

l One PVMD per machine
– all processes communicate through pvmd (by default)

l Any number of application processes per node

10CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Message Passing

l All messages have tags
– an integer to identify the message
– defined by the user

l Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

l All proccess are named based on task ids (tids)
– local/remote processes are the same

l Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)

11CMSC 818Z - S99 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Process Control

l Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

l Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

l Info functions
– pvm_mytid() - get the process task id

