

CMSC 818Z - S99 (lect 3)

copyright 1999 Jeffrey K. Hollingsworth

How to Write Parallel Programs

• Use old serial code

- compiler converts it to parallel
- called the dusty deck problem
- Serial Language plus Communication Library
 - no compiler changes required!
 - PVM and MPI use this approach
- New language for parallel computing
 - requires all code to be re-written
 - hard to create a language that provides performance on different platforms
- Hybrid Approach
 - HPF add data distribution commands to code
 - add parallel loops and synchronization operations

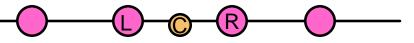
Application Example - Weather

- Typical of many scientific codes
 - computes results for three dimensional space
 - compute results at multiple time steps
 - uses equations to describe physics/chemistry of the problem
 - grids are used to discretize continuous space
 - granularity of grids is important to speed/accuracy
- Simplifications (for example, not in real code)
 - earth is flat (no mountains)
 - earth is round (poles are really flat, earth buldges at equator)
 - second order properties

Grid Points

• Divide Continuous space into discrete parts

- for this code, grid size is fixed and uniform
 - possible to change grid size or use multiple grids
- use three grids
 - two for latitude and longitude
 - one for elevation
 - Total of M * N * L points
- Design Choice: where is the grid point?
 - left, right, or center of the grid



- in multiple dimensions this multiples:
 - for 3 dimensions have 27 possible points

Variables

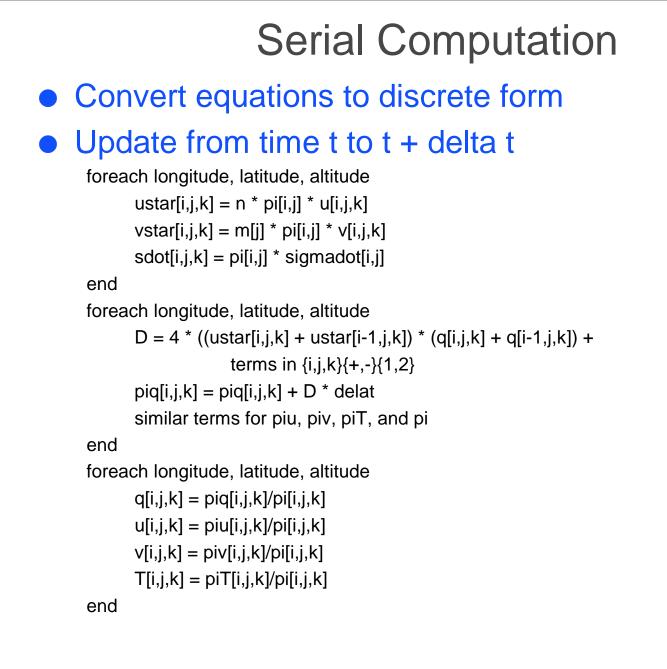
• One dimensional

- m - geo-potential (gravitational effects)

• Two dimensional

- pi "shifted" surface pressure
- sigmadot vertical component of the wind velocity
- Three dimensional (primary variables)
 - <u,v> wind velocity/direction vector
 - T temperature
 - q specific humidity
 - p pressure
- Not included
 - clouds
 - precipitation
 - can be derived from others

CMSC 818Z - S99 (lect 3)



Shared Memory Version

- in each loop nest, iterations are independent
- use a parallel for-loop for each loop nest
- synchronize (barrier) after each loop nest
 - this is overly conservative, but works
 - could use a single sync variable per item, but would incurr excessive overhead
- optential parallelism is M * N * L
- private variables: D, i, j, k
- Advantages of shared memory
 - easier to get something working (ignoring performance)
- Hard to debug
 - other processors can modify shared data

Distributed Memory Weather

- decompose data to specific processors
 - assign a cube to each processor
 - maximize volume to surface ratio
 - minimizes communication/computation ratio
 - called a <block,block,block> distribution
- need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
 - use send/receive to move the data
 - no need for barriers, send/receive operations provide sync
 - sends earier in computation too hide comm time
- Advantages
 - easier to debug
 - consider data locality explicity with data decomposition
- Problems
 - harder to get the code running

CMSC 818Z - S99 (lect 3)

Seismic Code

• Given echo data, compute under sea map

Computation model

- designed for a collection of workstations
- uses variation of RPC model
- workers are given an independent trace to compute
 - requires little communication
 - supports load balancing (1,000 traces is typical)

Performance

- max mfops = $O((F * nz * B^*)^{1/2})$
- F single processor MFLOPS
- nz linear dimension of input array
- B^{*} effective communication bandwidth
 - $B^* = B/(1 + BL/w) \approx B/7$ for Ethernet (10msec lat., w=1400)
- real limit to performance was latency not bandwidth

CMSC 818Z - S99 (lect 3)

Database Applications

- Too much data to fit in memory (or sometimes disk)
 - data mining applications (K-Mart has a 4-5TB database)
 - imaging applications (NASA has a site with 0.25 petabytes)
 - use a fork lift to load tapes by the pallet
- Sources of parallelism
 - within a large transaction
 - among multiple transactions

Join operation

- form a single table from two tables based on a common field
- try to split join attribute in disjoint buckets
 - if know data distribution is uniform its easy
 - if not, try hashing

Speedup in Join parallelism

- Books claims a speed up of 1/p² is possible
 - split each relation into p buckets
 - each bucket is a disjoint subset of the joint attribute
 - each processor only has to consider N/p tuples per relation
 - join is O(n²) so each processor does O((N/p)²) work
 - so spedup is $O(N^2/p^2)/O(N^2) = O(1/p^2)$

this is a lie!

- could split into 1/p buckets on one processor
- time would then be $O(p * (N/p)^2) = O(N^2/p)$
- so speedup is $O(N^2/p^2)/O(N^2/p) = O(1/p)$
 - Amdahls law is not violated

Parallel Search (TSP)

- may appear to be faster than 1/n
 - but this is not really the case either
- Algorithm
 - compute a path on a processor
 - if our path is shorter than the shortest one, send it to the others.
 - stop searching a path when it is longer than the shortest.
 - before computing next path, check for word of a new min path
 - stop when all paths have been explored.
- Why it appears to be faster than 1/n speedup
 - we found the a path that was shorter sooner
 - however, the reason for this is a different search order!

Ensuring a fair speedup

T_{serial} = faster of

- best known serial algorithm
- simulation of parallel computation
 - use parallel algorithm
 - run all processes on one processor
- parallel algorithm run on one processor
- If it appears to be super-linear
 - check for memory hierarchy
 - increased cache or real memory may be reason
 - verify order operations is the same in parallel and serial cases

Quantitative Speedup Consider master-worker one master and n worker processes communication time increases as a linear function of n $T_p = TCOMP_p + TCOMM_p$ $TCOMP_{p} = T_{s}/P$ $1/S_{p} = T_{p}/T_{s} = 1/P + TCOMM_{p}/T_{s}$ $TCOMM_{p}$ is P * $TCOMM_{1}$ $1/S_{p}=1/p + p * TCOMM_{1}/T_{s} = 1/P + P/r_{1}$ where $r_1 = T_s/TCOMM_1$ $d(1/S_p)/dP = 0 \rightarrow P_{opt} = r_1^{1/2} \text{ and } S_{opt}^{-1/2} = 0.5 r_1^{1/2}$ • For hierarchy of masters - TCOMM_p = (1+logP)TCOMM₁ $- P_{opt} = r_1 \text{ and } S_{opt} = r_1 / (1 + \log r_1)$