

Communication Networks

• Connect

- PE's, memory, I/O
- Key Performance Issues
 - latency: time for first byte
 - throughput: average bytes/second
- Possible Topologies
 - bus simple, but doesn't scale

Memory Systems

Key Performance Issues

- latency: time for first byte
- throughput: average bytes/second

• Design Issues

- Where is the memory
 - divided among each node
 - centrally located (on communication network)
- Access by processors
 - can all processors get to all memory?
 - is the access time uniform?

CMSC 818Z - S99 (lect 2)

Coordination

Synchronization

- protection of a single object (locks)
- coordination of processors (barriers)

• Size of a unit of work by a processor

- need to manage two issues
 - load balance processors have equal work
 - coordination overhead communication and sync.
- often called "grain" size large grain vs. fine grain

Sources of Parallelism

• Statements

- called "control parallel"
- can perform a series of steps in parallel
- basis of dataflow computers

Loops

- called "data parallel"
- most common source of parallelism
- each processor gets one (or more) iterations to perform

Applications

• Easy (embarrassingly parallel)

- multiple independent jobs (i.e..., different simulations)

• Scientific

- linear algebra
- particle simulations

Databases

- biggest success of parallel computing
- exploits semantics of relational calculus

Al

- search problems
- pattern recognition and image processing (main SIMD use)

Issues in Application Performance

• Speedup

- ratio of time on n nodes to time on a single node
- hold problem size fixed
- should really compare to best serial time
- goal is linear speedup
- super-linear speedup is possible due to:
 - adding more memory
 - search problems
- Iso-Speedup
 - scale data size up with number of nodes
 - goal is a flat horizontal curve
- Amdahl's Law
 - max speedup is 1/(serial fraction of time)
- Computation to Communication Ratio
 - goal is to maximize this ratio