
1CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Introduction

l Reading
– Papers

l Reminder: Project due Wed (by noon)
– Submit via email to hollings (mime attached tar file)
– Final.data on web page Monday PM

2CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Cache Coherency (write through)

l Read only data cached
l Writeable values can be cached by one processor

– a processor needs to gain write access
• must force invalidation of other cached copies

– all writes go back to main memory
– reads can be served from cache for processor with write

access

l Performance
– good for

• updates and reads by same processor
– bad for

• multiple updates by the same processor (many bus
writes)

3CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

How to Manage Caches

l Snooping
– each cache controller watches bus for “interesting” info
– may result in cache lines being invalidated if write seen

• i.e. a write through cache
– limited by speed of cache controllers to watch the bus

• must see everything to maintain correctness

l Directories
– memory stores information about cached copies
– does not require each cache controller to snoop
– permits more scaleable interconnect networks

4CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Directory Based Cache Controllers

l Requires additional circuits to maintain directories
l directories must be updated when a processors

– starts caching a value
– stops caching a value
– changes from read to write caching (or back)

l each cache line has a directory entry
– can use sparse schemes that only have entries for actively

cached items

l can have several memory controllers in a machine
– each manages a region of physical memory
– bit vectors (one bit per processor)
– addresses (several log2n entries)

5CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Representing Directories

l bit vectors
– one bit per processor
– uses lots of space for a large machine
– permits each processor to cache a value

l addresses
– several entries for PE id (each entry is log2 n bits)
– what happens if a processor wishes to cache, and all entries

are full?
• use a linked list of directories (SCI uses this approach)
• use a “wildcard” and force a broadcast to invalidate

6CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Stanford Dash

l Structure
– collection of bus based multi-processors
– interconnect network and cache controller connect nodes

l Cache System
– snoopy protocol within in a single SMP node
– directory based cache controller between nodes

• misses on local cluster go to home cluster of memory
“owner”

• owner may have current copy or could be cached on
another cluster

l Processors
– 4 MIPS R3000 (33 Mhz) per node

l Interconnect
– 2 dimensional mesh

7CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

Stanford Dash (cont.)

l Performance
– level 0 cache (1 clock)
– remote clutser load (132 clocks)

l New Directions
– FLASH
– use a full micro-processor for the cache controller

• permits customization of cache protocols
• makes the hardware simpler

8CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

SGI Origin Servers

l Commercialization of Stanford DASH
– SMP nodes
– directory based cache controller

l Changes
– processors are R10000
– only 2 nodes per bus

• slightly cheaper bus than DASH
• faster processors require more bus bandwidth

– interconnection network
• hypercube (to 32 nodes)
• re-configurale routers beyond

9CMSC 818Z – S00 (lect 06) copyright 1999 Jeffrey K. Hollingsworth

SGI Origin Structure

image copyright SGI, 1996.

