
Motivation

Distributed-memory architectures

� Physically distributed memory, disjoint addresses

� Advantages ! high price/performance, scalability

� Disadvantages ! local address spaces, communication

� Communicate via explicit send/recv messages

� Large messages amortize communication overhead

Data-Parallel Languages

� Uniform �ne-grain operations on arrays

� Shared data in large, global arrays

� Implicit synchronization between operations

� Implicit communication derived from mapping hints

� Examples: APL, Fortran 90

At one point, data-parallel languages were viewed as the most feasible

programming model for large distributed-memory multiprocessors.



High Performance Fortran (HPF)

TEMPLATE ! abstract problem domain

ALIGN ! map from array to decomposition

DISTRIBUTE ! map from decomposition to machine

Example REAL X(8,8)

TEMPLATE A(8,8)

ALIGN X(i, j) WITH A(j+3, i{2)

DISTRIBUTE A(*,BLOCK)

DISTRIBUTE A(CYCLIC,*)

FORALL ! parallel loop with copy-in/copy-out semantics

INDEP ! parallel loop

Intrinsics ! parallel functions from Fortran 90



Using HPF

Help analysis with assertions

� Align, distribute

� Forall, independent

� Intrinsics

Distribute array dimensions for parallelism

� data updated in parallel should be on di�erent processors

� data used together should be on the same processors

Don't try to hide from compiler what you're doing!



HPF Compiler

Data Decomposition

Sequential Fortran

Parallel Fortran

Synchronization

Data Movement

Requirements

� Partition data & computation

� Generate communication

Single-program, multiple-data (SPMD) node programs

\Owner Computes" Rule

� Owner of datum computes its value

� Dynamic data decomposition



Compiling for Distributed-Memory Machines

Data decomposition

� User-speci�ed (HPF) or automatic

� Derive computation distribution

� Simple decompositions appear su�cient

Compilation process

1) Analyze program ! apply dependence analysis

2) Partition data ! template, align, distribute

3) Partition computation ! owner computes rule

4) Analyze communication ! �nd nonlocal references

5) Optimize communication ! select communication

6) Manage storage ! select overlaps and bu�ers

7) Generate code ! instantiate partition & messages

Compilation approaches

� Calculates nonlocal data, generates send/recv

� Selects communication type, calls run-time library



HPF Compilation Example

f HPF Program g f Compiler Output g

REAL A(100), B(100) REAL A(1:25), B(0:25)

N$PROC = 4 P = myproc() f 0 ... 3 g

TEMPLATE D(100) lb$1 = max(P*25+1,2)-(P*25)

ALIGN A, B WITH D IF (P < 3) send B(25) to Pright

DISTRIBUTE D(BLOCK) IF (P > 0) recv B(0) from Pleft

DO i = 2,100 DO i = lb$1,25

A(i) = B(i{1) A(i) = B(i{1)

ENDDO ENDDO

� Local data ! A(1:25), B(1:25)

� Local computation ! [DO i = 1:25]

� Nonlocal accesses ! B(0:24) { B(1:25) = B(0)

� Communication ! send B(25) to Pright

� Overlap storage ! Extend B to hold B(0)



Communication Optimization Example

post B,C,D unbu�ered messages

send B,C,D vector message pipelining

f computation, communication g iteration reordering

recv B,C,D message vectorization

DO i = 1,100

A(i) = B(i+10) + B(i+11) + C(i+10) + D(100)

ENDDO

message coalescing collective

communication

message aggregation



Message Vectorization

Key optimization & code generation technique

Place communication at level of deepest loop that carries a true

dependence OR contains endpoints of a loop-independent true

dependence

Classify references as independent, carried-all, or carried-part

DO k = 1,M send & recv B

DO i = 1,N DO k = 1,M

�1 A(i) = B(i+2) send & recv C

�k C(i) = C(i+2) recv D

�i D(i) = D(i{2) DO i = 1,N/P

ENDDO A(i) = B(i+2)

ENDDO C(i) = C(i+2)

D(i) = D(i{2)

ENDDO

send D

ENDDO



Communication Selection

Utilize Collective Communication Primitives

� Simpli�es communication, utilizes e�cient primitives

� Syntactic pattern matching

Example

TEMPLATE D(N,N)

ALIGN A, B with D

DISTRIBUTE D(BLOCK,BLOCK)

do j = 2,N

do i = 2,N

A(i,j) = B(i,j-1)+B(i-1,j) [shift]

A(i,j) = B(c,j) [broadcast]

A(c,j) = B(i,j) [gather]

A(i,j) = B(j,i) [all-to-all,transpose]

A(f(i),j) = A(f(i),j)+B(g(i),j) [inspector/executor]

enddo

enddo



Handling Irregular Accesses

Irregular codes

� Memory access pattern determined by index array

� Value of index array unknown at compile time

Inspector-executor approach

� Compiler inserts call to inspector (possible reuse)

...which examines index array, calculates communication

� Compiler transforms loop into executor

...which performs communication & computation based on inspector

// irregular code // compiler output

do j = 1,100 inspect IDX, calculate MYIDX

B(...) = do j = 1,100

do i = 1,100 B(...) =

A(i) = B(IDX(i)) execute communication

do i = 1,100

A(i) = B(MYIDX(i))



Comparing Communication Optimizations
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Explicit Hydrodynamics
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Red-Black SOR
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32 processors

16 processors

8 processors

Machine Size

� 256 � 256(64K)

* 512 � 512(256K)

� 1K � 1K(1024K)

� 2K � 2K(4096K)

Problem Size

� 32 � 32 (1K)

2 64 � 64 (4K)

� 128 � 128(16K)

Experimental evaluation

� Applied communication optimizations by hand

� iPSC/860 timings for di�erent data sizes, # of processors

� Message vectorization (mv) main optimization



HPF Experience

Successes

� Standardized data-parallel languages

� Language quickly adopted (< 2 year)

� Multiple commercial compilers implemented

� Extensions proposed for HPF-2

Failures

� Initial compilers poor

� Performance unstable

� Support for complex applications limited

� Bleeding-edge users preferred message-passing standard (MPI)

� Casual users avoided distributed-memory multiprocessors


