
1CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Introduction

l Reading
– Today Communativity Analysis & OpenMP  
– Thursday HPF paper



2CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Programming Assignment Notes

l Assume that memory is limited
– don’t replicate the board on all nodes

l Need to provide load balancing
– goal is to speed computation
– must trade off

• communication costs of load balancing
• computation costs of making choices
• benefit of having similar amounts of work for each 

processor

l Consider “back of the envelop” calculations
– how fast can pvm move data?
– what is the update time for local cells?
– how big does the board need to be to see speedups?



3CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

OpenMP

l Support Parallelism for SMPs
– provide a simple portable model
– allows both shared and private data
– provides parallel do loops

l Includes 
– automatic support for fork/join parallelism
– reduction variables
– atomic statement

• one processes executes at a time
– single statement

• only one process runs this code (first thread to reach it)



4CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Sample Code

program compute_pi
integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, \021Enter number of intervals: \021
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)

do i = 1, n
x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, \021computed pi = \021, pi
stop
end



5CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Communitivity Analysis:Target 
Environment

l Shared memory multi-processors
l Object oriented programs

– C++ class methods
– pointer based graph data structures

l Sources of parallelism
– method invocation
– methods may be invoked

• recursively
• simple looping constructs (converted to tail recursion)



6CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Analysis

l Determine if two method invocations commute
– intuitive definition: can be performed in any order
– a followed by b (a;b) is the same as b then a (b;a)

l Technique
– symbolic evaluation

• generate symbolic results of running a;b and b;a
• like running a method but expressions not data

– compare two results
• invar analysis - are the variables the same?

– Need to know basic commutative ops (e.g. addition)
• sub-method invocation

– are multi-sets of different invocations the same



7CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Performance Issues

l Method Size
– methods should be the “natural” size
– too small - not enough work for overhead
– too largew -results in a load imbalance

l Synchronization
– need to provide mutex over shared data
– granularity an important parameter 

• too small - lock overhead dominates
• too large - reduce potential parallelism

– Compiler can change granularity
• start with one lock per method invocation
• user lock “coarsening” to merge locks across invocations



8CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Lock Granularity

l Hard to know correct lock size at compile time
Solution: use runtime adaptation

l Generate multiple versions of methods
– each uses a different lock granularity
– provide a way to switch between version

l Adaptation
– run one at a time and gather timing data for each one
– select best one

• need to make sure samples are representative



9CMSC 818Z - S00  (lect4) copyright 2000  Jeffrey K. Hollingsworth

Questions About the Technique

l Are the speedups good?
– 50% is not bad for an automatic tool

l Is the technique general?
– Has only tried two programs

• these were the target applications from the start
– works for recursive graph structures

• how big is this application domain?

l Will it work and play with other approaches?
– Can data parallelism be used for part of the code?


