
1CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Announcements

l Programming Assignment #1 will be available on web
l Reading

– Today MPI & PVM paper
– Monday OpenMP & Commutativity Analysis

2CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM

l Provide a simple, free, portable parallel environment
l Run on everything

– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win*
– Works on a heterogenous collection of machines

• handles type conversion as needed

l Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)

3CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Environment (UNIX)

Application
Process

Bus Network

PVMDPVMD

PVMDPVMD

PVMD

Application
Process

Application
Process

Application
ProcessApplication

Process

Sun SPARC Sun SPARC

IBM RS/6000 Cray Y-MPDECmmp 12000

l One PVMD per machine
– all processes communicate through pvmd (by default)

l Any number of application processes per node

4CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Message Passing

l All messages have tags
– an integer to identify the message
– defined by the user

l Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

l All proccess are named based on task ids (tids)
– local/remote processes are the same

l Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)

5CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Process Control

l Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

l Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

l Info functions
– pvm_mytid() - get the process task id

6CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Group Operations

l Group is the unit of communication
– a collection of one or more processes
– processes join group with pvm_joingroup(“<group name>“)
– each process in the group has a unique id

• pvm_gettid(“<group name>“)

l Barrier
– can involve a subset of the processes in the group
– pvm_barrier(“<group name>“, count)

l Reduction Operations
– pvm_reduce(void (*func)(), void *data, int count, int

datatype, int msgtag, char *group, int rootinst)
• result is returned to rootinst node
• does not block

– pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct

7CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

PVM Performance Issues

l Messages have to go through PVMD
– can use direct route option to prevent this problem

l Packing messages
– semantics imply a copy
– extra function call to pack messages

l Heterogenous Support
– information is sent in machine independent format
– has a short circuit option for known homogenous comm.

• passes data in native format then

8CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Sample PVM Program
int main(int argc, char **argv) {

int myGroupNum;
int friendTid;
int mytid;
int tids[2];
int message[MESSAGESIZE];
int c,i,okSpawn;

/* Initialize process and spawn if necessary */
myGroupNum=pvm_joingroup("ping-pong");
mytid=pvm_mytid();
if (myGroupNum==0) { /* I am the first process */

pvm_catchout(stdout);
okSpawn=pvm_spawn(MYNAME,argv,0,"",1,&friendTid);
if (okSpawn!=1) {

printf("Can't spawn a copy of myself!\n");
pvm_exit();
exit(1);

}
tids[0]=mytid;
tids[1]=friendTid;

} else { /*I am the second process */
friendTid=pvm_parent();
tids[0]=friendTid;
tids[1]=mytid;

}
pvm_barrier("ping-pong",2);

/* Main Loop Body */
if (myGroupNum==0) {

/* Initialize the message */
for (i=0 ; i<MESSAGESIZE ; i++) {

message[i]='1';
}

/* Now start passing the message back and forth */
for (i=0 ; i<ITERATIONS ; i++) {

pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);

}
} else {

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);
pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

}
pvm_exit();
exit(0);

}

9CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

MPI
l Goals:

– Standardize previous message passing:
• PVM, P4, NX

– Support copy free message passing
– Portable to many platforms

l Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a name shifted version

l Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

l Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

10CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

MPI Communicators

l Provide a named set of processes for communication
l All processes within a communicator can be named

– numbered from 0… n-1

l Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive

l All programs start will MPI_COMM_WORLD

11CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Non-Blocking Functions

l Two Parts
– post the operation
– wait for results

l Also includes a poll option
– checks if the operation has finished

l Semantics
– must not alter buffer while operation is pending

12CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

MPI Misc.

l MPI Types
– All messages are typed

• base types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

l Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

l What’s not in MPI-1
– process creation
– I/O
– one sided communication

