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Announcements

l Programming Assignment #1 will be available on web
l Reading

– Today MPI & PVM paper
– Monday OpenMP & Commutativity Analysis
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PVM

l Provide a simple, free, portable parallel environment
l Run on everything

– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win*
– Works on a heterogenous collection of machines

• handles type conversion as needed

l Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)
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PVM Environment (UNIX)
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l One PVMD per machine
– all processes communicate through pvmd (by default)

l Any number of application processes per node
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PVM Message Passing

l All messages have tags
– an integer to identify the message
– defined by the user

l Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

l All proccess are named based on task ids (tids)
– local/remote processes are the same

l Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)
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PVM Process Control

l Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

l Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

l Info functions
– pvm_mytid() - get the process task id
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PVM Group Operations

l Group is the unit of communication
– a collection of one or more processes
– processes join group with pvm_joingroup(“<group name>“)
– each process in the group has a unique id

• pvm_gettid(“<group name>“)

l Barrier
– can involve a subset of the processes in the group
– pvm_barrier(“<group name>“, count)

l Reduction Operations
– pvm_reduce( void (*func)(),  void *data, int count, int

datatype, int msgtag, char *group, int rootinst)
• result is returned to rootinst node
• does not block

– pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct
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PVM Performance Issues

l Messages have to go through PVMD
– can use direct route option to prevent this problem

l Packing messages
– semantics imply a copy
– extra function call to pack messages

l Heterogenous Support
– information is sent in machine independent format
– has a short circuit option for known homogenous comm.

• passes data in native format then
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Sample PVM Program
int main(int argc, char **argv) {

int myGroupNum;
int friendTid;
int mytid;
int tids[2];
int message[MESSAGESIZE];
int c,i,okSpawn;           

/* Initialize process and spawn if necessary */
myGroupNum=pvm_joingroup("ping-pong");
mytid=pvm_mytid();
if (myGroupNum==0)  { /* I am the first process */

pvm_catchout(stdout);
okSpawn=pvm_spawn(MYNAME,argv,0,"",1,&friendTid);
if (okSpawn!=1) {

printf("Can't spawn a copy of myself!\n");
pvm_exit();
exit(1);

}
tids[0]=mytid;
tids[1]=friendTid;

} else { /*I am the second process */
friendTid=pvm_parent();
tids[0]=friendTid;
tids[1]=mytid;

}
pvm_barrier("ping-pong",2);

/* Main Loop Body */
if (myGroupNum==0) {

/* Initialize the message */
for (i=0 ; i<MESSAGESIZE ; i++) {

message[i]='1';
}

/* Now start passing the message back and forth */
for (i=0 ; i<ITERATIONS ; i++) {

pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);

}
} else {

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);
pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

}
pvm_exit();
exit(0);

}
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MPI
l Goals:

– Standardize previous message passing:
• PVM, P4, NX

– Support copy free message passing
– Portable to many platforms

l Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a  name shifted version

l Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

l Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.
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MPI Communicators

l Provide a named set of processes for communication
l All processes within a communicator can be named

– numbered from 0… n-1

l Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive

l All programs start will MPI_COMM_WORLD
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Non-Blocking Functions

l Two Parts
– post the operation
– wait for results

l Also includes a poll option
– checks if the operation has finished

l Semantics
– must not alter buffer while operation is pending
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MPI Misc.

l MPI Types
– All messages are typed

• base types are pre-defined: 
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

l Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

l What’s not in MPI-1
– process creation
– I/O
– one sided communication


