Introduction

- Class is an introduction to parallel computing
 - topics include: hardware, applications, compilers, system software, and tools
- Will count for Masters/PhD Comp Credit
- Work required
 - small programming assignment
 - midterm
 - classroom participation
 - project
- Photos were taken of the class

What is Parallel Computing?

Does it include:

- super-scalar processing (more than one insn at once)?
- client/server computing?
 - what if RPC calls are non-blocking?
- vector processing (same instruction to several values)?
- collection of PC's **not** connected to a network?
- For this class, parallel computing is:
 - a collection of processing elements (more than one).
 - connected to a communication network.
 - working together to solve a single problem.

Why Parallelism

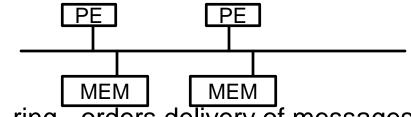
- Speed
 - need to get results faster than possible with sequential
 - a weather forecast that is late is useless
 - could come from
 - more processing elements (P.E.)
 - more memory size
 - more disks
- Cost: cheaper to buy many smaller machines
 - this is only recently true due to
 - VLSI
 - commodity parts

What Does a Parallel Computer Look Like?

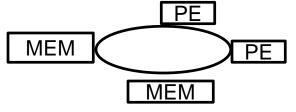
Hardware

- processors
- communication
- memory
- coordination

Software


- languages
- operating systems
- programming models

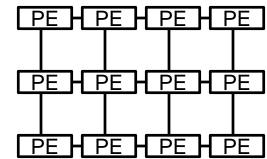
Processing Elements (PE)


- Key Processor Choices
 - How many?
 - How powerful?
 - Custom or off-the-shelf?
- Major Styles of Parallel Computing
 - SIMD Single Instruction Multiple Data
 - one master program counter
 - MIMD Multiple Instruction Multiple Data
 - separate code for each processor
 - SPMD Single Program Multiple Data
 - same code on each processor, separate PC's on each
 - Dataflow instruction waits for operands
 - "automatically" finds parallelism

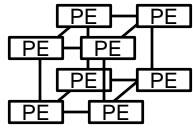
Communication Networks

- Connect
 - PE's, memory, I/O
- Key Performance Issues
 - latency: time for first byte
 - throughput: average bytes/second
- Possible Topologies
 - bus simple, but doesn't scale

ring - orders delivery of messages


6

Topologies (cont)


tree - needs to increase bandwidth near the top

mesh - two or three dimensions

hypercube - needs a power of number of nodes

Memory Systems

- Key Performance Issues
 - latency: time for first byte
 - throughput: average bytes/second
- Design Issues
 - Where is the memory
 - divided among each node
 - centrally located (on communication network)
 - Access by processors
 - can all processors get to all memory?
 - is the access time uniform?

Coordination

- Synchronization
 - protection of a single object (locks)
 - coordination of processors (barriers)
- Size of a unit of work by a processor
 - need to manage two issues
 - load balance processors have equal work
 - coordination overhead communication and sync.
 - often called "grain" size large grain vs. fine grain

Sources of Parallelism

Statements

- called "control parallel"
- can perform a series of steps in parallel
- basis of dataflow computers

Loops

- called "data parallel"
- most common source of parallelism
- each processor gets one (or more) iterations to perform

Applications

- Easy (embarrassingly parallel)
 - multiple independent jobs (i.e..., different simulations)
- Scientific
 - linear algebra
 - particle simulations
- Databases
 - biggest success of parallel computing
 - exploits semantics of relational calculus
- A
 - search problems
 - pattern recognition and image processing (main SIMD use)

Issues in Application Performance

Speedup

- ratio of time on n nodes to time on a single node
- hold problem size fixed
- should really compare to best serial time
- goal is linear speedup
- super-linear speedup is possible due to:
 - adding more memory
 - search problems

Iso-Speedup

- scale data size up with number of nodes
- goal is a flat horizontal curve
- Amdahl's Law
 - max speedup is 1/(serial fraction of time)
- Computation to Communication Ratio
 - goal is to maximize this ratio