
CMSC 714

Scheduling

Guest Lecturer: Sukhyun Song

2 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Scheduling Techniques for Concurrent
Systems

John K. Ousterhout

IEEE ICDCS’82

3 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Introduction
●  Motivation

–  People assume in OS scheduling that interactions between
processes are the exception rather than the rule.

–  But it is not true any more.
•  Multiprocessor systems are appearing.
•  Cooperation between processes becomes widespread.
•  Traditional techniques will break down.

●  Short-term scheduling
–  Two-phase blocking scheme

●  Long-term scheduling
–  Three algorithms of coscheduling

4 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Short-Term Scheduling
●  Waiting is a fundamental aspect of communication.

–  It is unlikely that two processes reach the rendezvous point
at exactly the same time.

–  A sender or a receiver should wait for the other party.
●  Most short-term schedulers are inefficient.

–  Immediate blocking: When a process waits for some event, it
is thrown off its processor and another process is activated.

–  It always requires two context swaps.
●  Solution: to divide waiting into two phases

–  Pause: A process pauses until the event occurs.
–  Block: If pause time is exceeded, it relinquishes a processor.
–  Effective only for fine-grained communication

•  The event should occur very soon so that we do not get
into the block phase.

•  Duration of the event wait < 2 x CS (context swap cost)

5 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Thrashing and Process Working Sets (1)
●  Naïve long-term scheduling

–  Processes are sending messages among themselves.
–  Half scheduled in odd time slices, the other in even slices
–  Most processes in the executing half will block awaiting

messages from processes in the non-executing half.
●  Process thrashing

–  Progress of parallel program is limited by scheduling
decision rather than communication primitive speed.

–  Demand paging: Progress of program is limited by speed of
swapping rather than memory reference speed.

●  Solution: coscheduling
–  We should schedule a group of closely-interacting processes

(process working set) for execution simultaneously.
–  Make parallel program progress fast
–  Estimating process working set dynamically is not easy.

•  To record message trace details: expensive

6 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Thrashing and Process Working Sets (2)
●  Assumptions

–  Process working sets statically specified by programmers.
–  A process can be loaded onto any processor, but cannot move

after it starts execution.
–  A task force (TF) means a process working set.
–  TF coscheduled: All runnable processes are executing

simultaneously on different processors.
–  TF fragmented: not coscheduled

●  Goal
–  maximize avg # processors executing coscheduled processes

●  Simulation parameters
–  P=50 processors / system
–  At most Q=16 processes / processor
–  Q large enough that allocation always succeeds
–  No TF has > P processes.

7 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Coscheduling: Matrix Method
●  Matrix of process slots (Figure 1)

–  P columns (processors) x Q rows (processes)
●  Allocation

–  Find a row to accommodate all processes in a task force
●  Scheduling

–  Round-robin mechanism
•  In time slice 0, we run processes in row 0.

●  Alternate Selection
–  Executing processes can block awaiting terminal input.
–  Each processor scans its column to find a runnable process

and runs it as a TF fragment.
●  Drawback

–  Process space is partitioned into disjoint rows.
•  Internal fragmentation

–  Alternate selection may miss coscheduling.

8 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Coscheduling: Continuous Algorithm
●  Sequence of process slots (Figure 2)

–  Slots for P processors x Q processes
●  Allocation

–  Place a window of width P slots at the left end of sequence
–  Move the window until finding enough empty slots to

accommodate the new task force.
–  Space is more packed than the matrix method.

●  Scheduling
–  Each time slice, we move the window until the first process

is the leftmost process of a task force that has not been
coscheduled in the current sweep. (Figure 3)

–  Alternate selection
●  Drawback

–  A new task force may be divided between several holes.
•  External fragmentation

9 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Coscheduling: Undivided Algorithm
●  Allocation

–  The same as the continuous algorithm, but no holes

●  Scheduling
–  The same as the continuous algorithm

●  Good
–  Eliminate holes and increase coscheduling

●  Bad
–  Space is less packed.

10 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Simulation: Effect of System Load
●  Coscheduling Effectiveness

–  Average (across time slices) of # processors executing
coscheduled processes / # processors w/ runnable
processes

–  1 is ideal.
●  System Load

–  # runnable processes / # processors (TF arrival rate)

●  Figure 4
–  System load vs coscheduling effectiveness
–  Load increases, then effectiveness decreases.

•  Straddling (continuous, undivided)
•  Alternate selection (all three)

11 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Simulation: Effect of Task Force Size
●  Average Task Force Size

–  # processes in a task force

●  Figure 5
–  Average TF size vs. coscheduling effectiveness
–  TF size increases, then effectiveness decreases.
–  Matrix method

•  Worst at large average task force size (>15)
•  It does not use space efficiently.

–  Continuous algorithm
•  Worst at small average task force size (5)
•  Large TF can be fragmented on many holes.

–  Undivided algorithm
•  It performs the best. (efficient space, no holes)

12 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Simulation: Effect of Idle Processes
●  Idle process

–  Waiting for external event such as terminal input

●  Figure 7
–  Idle fraction vs. coscheduling effectiveness
–  Continuous

•  Worst at high idle fraction (> 0.8)
•  TF can be fragmented on holes.

–  Matrix and Undivided
•  Good at high idle fraction
•  Tend to allocate TFs in contiguous slots

13 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Comparison
●  Matrix

–  Fast allocation / scheduling
–  Internal fragmentation

●  Continuous
–  Fast allocation / scheduling
–  Dense packing
–  External fragmentation

●  Undivided
–  Slow allocation, fast scheduling
–  Dense packing

14 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Effective Distributed Scheduling of
Parallel Workloads

Andrea C. Dusseau et al.

ACM SIGMETRICS’96

15 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Introduction
●  Motivation

–  Coscheduling: Processes of a parallel job are run at the same
time across processors in an explicit manner.

–  Fault-tolerant scalable coscheduling is non-trivial.
–  Round-robin mechanism for interactive job is bad.

●  Introduce a local implicit scheduling
–  Philosophy: Communication events within the parallel

applications provide sufficient information for coordinating the
scheduling of cooperating processes.

–  Each scheduler is able to make independent decisions.
–  Implicit scheduling is a feasible alternative to coscheduling.

•  Previous researches: Local scheduling is insufficient for
fine-grained parallel applications.

16 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Background (1)
●  Programming model

–  Bulk-synchronous: sequence of supersteps (Figure 1)
•  computation, opening barrier, communication, closing barrier

–  Single-Program Multiple-Data
●  Parameters

–  P: # processes in a job
–  g: computation granularity (time)
–  v: load imbalance (difference of max and min g)
–  c: time between read events in comm.
–  L: network latency (each read time in comm.)

●  Communication patterns
–  BARRIER: no communication
–  NEWS: grid communication, four neighbors
–  TRANSPOSE: all-to-all communication

17 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Background (2)
●  Basic design of local scheduling

–  Dynamic priority allocation scheme
•  A job’s priority is lowered if it runs w/o relinquishing a

processor.
•  A job’s priority is raised if it sleeps frequently.

–  Pessimistic assumptions
•  Clock and timer expire independently across processors.
•  Multiple jobs arrive in the system at the same time,

processes are randomly ordered in the local scheduling
queues.

–  Optimistic assumptions about coscheduling
•  No skew of time quanta across processors
•  Global context-switch cost = local scheduler cost

18 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Background (3)
●  Synthetic workload

–  Parameter space is huge. (5 parameters)
–  c: communication granularity is fixed to 8us.
–  P: 32 processes in a job
–  10 seconds / job

●  Figure 2
–  Coscheduling: processes of a parallel job are run at the

same time across processors in an explicit manner.
–  Time breakdown when the programs are coscheduled
–  Load imbalance v increases, then sync time increases.
–  NEWS and TRANSPOSE involve communication.

•  Computation granularity g decreases, then
communication time increases.

19 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Verification of Literature
●  Local scheduling w/ immediate blocking

–  A process blocks immediately on sync. and comm.
–  In literature, it is worse than coscheduling at fine granularity.

●  Figure 3
–  Slowdown compared to coscheduling
–  Load imbalance up: local gets better

•  We can run other processes by context-switching.
–  Coarse-grain computation (g>=5ms): Local scheduling wins.
–  Fine-grain computation: Coscheduling wins.

•  Many steps of sync. and comm.: Context-switching
happens a lot for local scheduling.

●  Figure 4
–  Varying latency L and context-switching cost CS
–  Coarse-grain, high load imbalance: Local scheduling wins.
–  Low CS, High L: local is good, comp-comm overlap

20 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Two-Phase Fixed-Spin
●  Algorithm

–  A waiting process spins for a predetermined spin time.
–  If a response is received before time expires, it continues

executing, o.w., it blocks and moves on to another process.
●  Figure 5 (spin time = 1CS = 200us)

–  Better than immediate blocking (compared to Figure 3)
–  Still bad at fine-grain computation

●  Figure 6 (spin time = 2, 4, 8CS = 400us)
–  Varies spin time for NEWS communication pattern
–  Better than 1CS

●  Figure 7 (scheduling skew of 2CS)
–  Shows why spin time >= 2CS
–  P2 started CS to Job B right before Barrier is done.
–  P3 wants to read data from P2, spins until P2 finishes 2CS.

21 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Adaptive Blocking
●  Problem of fixed-spin

–  Hard to decide a proper spin time that is always beneficial
●  Adaptive blocking strategy w/ load-imbalance oracle

–  Suppose we know load imbalance v of a program.
–  We’d like to decide a threshold parameter V s.t. it is

beneficial if we take the following strategy of spinning time.
•  v > V: spin for 2CS, otherwise spin for v + 2L

–  Think of a case of spinning for 2CS
•  Benefit: time to run other jobs v/2 – 2CS – CS
•  Cost: scheduling skew 2CS (Figure 7)
•  Benefit > cost: v > 10CS
•  V = 10CS

●  Figure 8
–  Closer to coscheduling

22 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Approximation of Load-Imbalance v
●  Local approximation

–  Each process uses max waiting time for barrier as the
approximation of v

•  Handling outliers: disregard the top 10% of data points
●  Figure 9

–  Worse than oracle at fine-grain computation
–  Underestimate v because of disregarding outliers

●  Global approximation
–  If the barrier operation is implemented in software, each

process sends a message to a root process.
–  The root process can record max waiting time for barrier and

determine approximation of v.
•  Again, remove the top 10% of outliers

●  Figure 10
–  Better than local approximation (Figure 9)

23 CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Sensitivity to the Local Scheduler
●  Timer skew

–  Up to this point: pessimistic assumption
•  Timers are independent across processors.

●  Figure 11
–  What if we synchronize timers?
–  Closer to coscheduling

●  Round-robin scheduling
–  So far, we used priority-based scheduling.

●  Figure 12
–  Round-robin scheduler is less robust.
–  Slowdown is 3.4x for some cases.

