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Introduction 
●  Motivation 

–  People assume in OS scheduling that interactions between 
processes are the exception rather than the rule. 

–  But it is not true any more. 
•  Multiprocessor systems are appearing. 
•  Cooperation between processes becomes widespread. 
•  Traditional techniques will break down. 

●  Short-term scheduling 
–  Two-phase blocking scheme 

●  Long-term scheduling 
–  Three algorithms of coscheduling 
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Short-Term Scheduling 
●  Waiting is a fundamental aspect of communication. 

–  It is unlikely that two processes reach the rendezvous point 
at exactly the same time. 

–  A sender or a receiver should wait for the other party. 
●  Most short-term schedulers are inefficient. 

–  Immediate blocking: When a process waits for some event, it 
is thrown off its processor and another process is activated. 

–  It always requires two context swaps. 
●  Solution: to divide waiting into two phases 

–  Pause: A process pauses until the event occurs. 
–  Block: If pause time is exceeded, it relinquishes a processor. 
–  Effective only for fine-grained communication 

•  The event should occur very soon so that we do not get 
into the block phase. 

•  Duration of the event wait < 2 x CS (context swap cost) 
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Thrashing and Process Working Sets (1) 
●  Naïve long-term scheduling 

–  Processes are sending messages among themselves. 
–  Half scheduled in odd time slices, the other in even slices 
–  Most processes in the executing half will block awaiting 

messages from processes in the non-executing half.  
●  Process thrashing 

–  Progress of parallel program is limited by scheduling 
decision rather than communication primitive speed. 

–  Demand paging: Progress of program is limited by speed of 
swapping rather than memory reference speed. 

●  Solution: coscheduling 
–  We should schedule a group of closely-interacting processes 

(process working set) for execution simultaneously. 
–  Make parallel program progress fast 
–  Estimating process working set dynamically is not easy. 

•  To record message trace details: expensive 
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Thrashing and Process Working Sets (2) 
●  Assumptions 

–  Process working sets statically specified by programmers. 
–  A process can be loaded onto any processor, but cannot move 

after it starts execution. 
–  A task force (TF) means a process working set. 
–  TF coscheduled: All runnable processes are executing 

simultaneously on different processors. 
–  TF fragmented: not coscheduled 

●  Goal 
–  maximize avg # processors executing coscheduled processes 

●  Simulation parameters 
–  P=50 processors / system 
–  At most Q=16 processes / processor 
–  Q large enough that allocation always succeeds 
–  No TF has > P processes. 
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Coscheduling: Matrix Method 
●  Matrix of process slots (Figure 1) 

–  P columns (processors) x Q rows (processes) 
●  Allocation 

–  Find a row to accommodate all processes in a task force 
●  Scheduling 

–  Round-robin mechanism 
•  In time slice 0, we run processes in row 0. 

●  Alternate Selection 
–  Executing processes can block awaiting terminal input. 
–  Each processor scans its column to find a runnable process 

and runs it as a TF fragment. 
●  Drawback 

–  Process space is partitioned into disjoint rows. 
•  Internal fragmentation 

–  Alternate selection may miss coscheduling. 
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Coscheduling: Continuous Algorithm 
●  Sequence of process slots (Figure 2) 

–  Slots for P processors x Q processes 
●  Allocation 

–  Place a window of width P slots at the left end of sequence 
–  Move the window until finding enough empty slots to 

accommodate the new task force. 
–  Space is more packed than the matrix method. 

●  Scheduling 
–  Each time slice, we move the window until the first process 

is the leftmost process of a task force that has not been 
coscheduled in the current sweep. (Figure 3) 

–  Alternate selection 
●  Drawback 

–  A new task force may be divided between several holes. 
•  External fragmentation 
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Coscheduling: Undivided Algorithm 
●  Allocation 

–  The same as the continuous algorithm, but no holes 

●  Scheduling 
–  The same as the continuous algorithm 

●  Good 
–  Eliminate holes and increase coscheduling 

●  Bad 
–  Space is less packed. 
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Simulation: Effect of System Load 
●  Coscheduling Effectiveness 

–  Average (across time slices) of # processors executing 
coscheduled processes / # processors w/ runnable 
processes 

–  1 is ideal. 
●  System Load 

–  # runnable processes / # processors (TF arrival rate) 

●  Figure 4 
–  System load vs coscheduling effectiveness 
–  Load increases, then effectiveness decreases. 

•  Straddling (continuous, undivided) 
•  Alternate selection (all three) 
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Simulation: Effect of Task Force Size 
●  Average Task Force Size 

–  # processes in a task force 

●  Figure 5 
–  Average TF size vs. coscheduling effectiveness 
–  TF size increases, then effectiveness decreases. 
–  Matrix method 

•  Worst at large average task force size (>15) 
•  It does not use space efficiently. 

–  Continuous algorithm 
•  Worst at small average task force size (5) 
•  Large TF can be fragmented on many holes. 

–  Undivided algorithm 
•  It performs the best. (efficient space, no holes) 
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Simulation: Effect of Idle Processes 
●  Idle process 

–  Waiting for external event such as terminal input 

●  Figure 7 
–  Idle fraction vs. coscheduling effectiveness 
–  Continuous 

•  Worst at high idle fraction (> 0.8) 
•  TF can be fragmented on holes. 

–  Matrix and Undivided 
•  Good at high idle fraction 
•  Tend to allocate TFs in contiguous slots 
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Comparison 
●  Matrix 

–  Fast allocation / scheduling 
–  Internal fragmentation 

●  Continuous 
–  Fast allocation / scheduling 
–  Dense packing 
–  External fragmentation 

●  Undivided 
–  Slow allocation, fast scheduling 
–  Dense packing 
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Introduction 
●  Motivation 

–  Coscheduling: Processes of a parallel job are run at the same 
time across processors in an explicit manner. 

–  Fault-tolerant scalable coscheduling is non-trivial. 
–  Round-robin mechanism for interactive job is bad. 

●  Introduce a local implicit scheduling 
–  Philosophy: Communication events within the parallel 

applications provide sufficient information for coordinating the 
scheduling of cooperating processes. 

–  Each scheduler is able to make independent decisions. 
–  Implicit scheduling is a feasible alternative to coscheduling. 

•  Previous researches: Local scheduling is insufficient for 
fine-grained parallel applications. 
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Background (1) 
●  Programming model 

–  Bulk-synchronous: sequence of supersteps (Figure 1) 
•  computation, opening barrier, communication, closing barrier 

–  Single-Program Multiple-Data 
●  Parameters 

–  P: # processes in a job 
–  g: computation granularity (time) 
–  v: load imbalance (difference of max and min g) 
–  c: time between read events in comm. 
–  L: network latency (each read time in comm.) 

●  Communication patterns 
–  BARRIER: no communication 
–  NEWS: grid communication, four neighbors 
–  TRANSPOSE: all-to-all communication 
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Background (2) 
●  Basic design of local scheduling 

–  Dynamic priority allocation scheme 
•  A job’s priority is lowered if it runs w/o relinquishing a 

processor. 
•  A job’s priority is raised if it sleeps frequently. 

–  Pessimistic assumptions 
•  Clock and timer expire independently across processors. 
•  Multiple jobs arrive in the system at the same time, 

processes are randomly ordered in the local scheduling 
queues. 

–  Optimistic assumptions about coscheduling 
•  No skew of time quanta across processors 
•  Global context-switch cost = local scheduler cost 
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Background (3) 
●  Synthetic workload 

–  Parameter space is huge. (5 parameters) 
–  c: communication granularity is fixed to 8us. 
–  P: 32 processes in a job 
–  10 seconds / job 

●  Figure 2 
–  Coscheduling: processes of a parallel job are run at the 

same time across processors in an explicit manner. 
–  Time breakdown when the programs are coscheduled 
–  Load imbalance v increases, then sync time increases. 
–  NEWS and TRANSPOSE involve communication. 

•  Computation granularity g decreases, then 
communication time increases. 
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Verification of Literature 
●  Local scheduling w/ immediate blocking 

–  A process blocks immediately on sync. and comm. 
–  In literature, it is worse than coscheduling at fine granularity. 

●  Figure 3 
–  Slowdown compared to coscheduling 
–  Load imbalance up: local gets better 

•  We can run other processes by context-switching. 
–  Coarse-grain computation (g>=5ms): Local scheduling wins. 
–  Fine-grain computation: Coscheduling wins. 

•  Many steps of sync. and comm.: Context-switching 
happens a lot for local scheduling. 

●  Figure 4 
–  Varying latency L and context-switching cost CS 
–  Coarse-grain, high load imbalance: Local scheduling wins. 
–  Low CS, High L: local is good, comp-comm overlap 
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Two-Phase Fixed-Spin 
●  Algorithm 

–  A waiting process spins for a predetermined spin time. 
–  If a response is received before time expires, it continues 

executing, o.w., it blocks and moves on to another process. 
●  Figure 5 (spin time = 1CS = 200us) 

–  Better than immediate blocking (compared to Figure 3) 
–  Still bad at fine-grain computation 

●  Figure 6 (spin time = 2, 4, 8CS = 400us) 
–  Varies spin time for NEWS communication pattern 
–  Better than 1CS 

●  Figure 7 (scheduling skew of 2CS) 
–  Shows why spin time >= 2CS 
–  P2 started CS to Job B right before Barrier is done. 
–  P3 wants to read data from P2, spins until P2 finishes 2CS. 
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Adaptive Blocking 
●  Problem of fixed-spin 

–  Hard to decide a proper spin time that is always beneficial 
●  Adaptive blocking strategy w/ load-imbalance oracle 

–  Suppose we know load imbalance v of a program. 
–  We’d like to decide a threshold parameter V s.t. it is 

beneficial if we take the following strategy of spinning time. 
•  v > V: spin for 2CS, otherwise spin for v + 2L 

–  Think of a case of spinning for 2CS 
•  Benefit: time to run other jobs v/2 – 2CS – CS 
•  Cost: scheduling skew 2CS (Figure 7) 
•  Benefit > cost: v > 10CS 
•  V = 10CS 

●  Figure 8 
–  Closer to coscheduling 
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Approximation of Load-Imbalance v 
●  Local approximation 

–  Each process uses max waiting time for barrier as the 
approximation of v 

•  Handling outliers: disregard the top 10% of data points 
●  Figure 9 

–  Worse than oracle at fine-grain computation 
–  Underestimate v because of disregarding outliers 

●  Global approximation 
–  If the barrier operation is implemented in software, each 

process sends a message to a root process. 
–  The root process can record max waiting time for barrier and 

determine approximation of v. 
•  Again, remove the top 10% of outliers 

●  Figure 10 
–  Better than local approximation (Figure 9) 
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Sensitivity to the Local Scheduler 
●  Timer skew 

–  Up to this point: pessimistic assumption 
•  Timers are independent across processors. 

●  Figure 11 
–  What if we synchronize timers? 
–  Closer to coscheduling 

●  Round-robin scheduling 
–  So far, we used priority-based scheduling. 

●  Figure 12 
–  Round-robin scheduler is less robust. 
–  Slowdown is 3.4x for some cases. 


