
CMSC 714
Lecture 6

MPI vs. OpenMP
and OpenACC

Guest Lecturer: Sukhyun Song

(original slides by Alan Sussman)

2CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Parallel Programming with
Message Passing and Directives

3CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

MPI + OpenMP

� Some applications can take advantage of both
message passing (DMP) and threads (SMP)
– Question is what to do to obtain best overall performance,

without too much programming difficulty

– Choices are all MPI, all OpenMP, or both

– For both, the common option is two loop levels.

• outer loop parallelized with message passing

• inner loop parallelized with directives to generate threads

� Applications studied:
– Hydrology – CGWAVE

– Computational chemistry – GAMESS

– Linear algebra – matrix multiplication and QR factorization

– Seismic processing – SPECseis95

– Computational fluid dynamics – TLNS3D

– Computational physics - CRETIN

4CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Types of parallelism in the codes
� Message passing parallelism (MPI)

– Parametric – coarse-grained outer loop for task parallelism
(assign different parameters to different tasks)

– Structured domains – domain decomposition into structured
and unstructured grids, communication among parallel tasks

– Direct solvers – linear algebra (large systems of equations),
lots of communication and load balancing required

� Shared memory parallelism (OpenMP)
– Statically scheduled parallel loops – one large loop w/ many

subroutines, or several smaller loops

– Parallel regions – coordinates data structure access among
a series of parallel loops (merge multiple loops into one
parallel region to reduce overhead of thread scheduling)

– Dynamic load balanced – when static scheduling leads to
load imbalance from irregular task sizes

5CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

CGWAVE

� Hydrology problem
– models wave motions of the sea

� Two levels of parallelism for speedup
– MPI parameter space evaluation at outer loop

– OpenMP sparse linear equation solver in inner loops

� Boss-worker strategy for dynamic load balancing
– The boss process communicates with worker processes.

– The strategy breaks down as # worker processes
approaches total # parameter configurations. (Q)

� Performance results (Figure 1)

– The best performance obtained when both MPI and
OpenMP are used. (16 MPI workers and 4 OpenMP threads)

6CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

GAMESS

� Computational chemistry
– MPI across compute nodes, OpenMP within each node

� Run on top of Global Arrays library
– for distributed array operations

– The library uses MPI (paper says PVM) and OpenMP.

� Linear algebra solvers mainly use OpenMP
– simpler than MPI code

� MPI provides high performance for large problems
– can use a lot of processors in a distributed memory system

– complicated code vs. high performance

� Performance results (Table 2)
– “medium” sized SPEC benchmark

– 32 CPUs speedup 5.11x over 4 CPUs. (Q: ideal speedup?)

7CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Linear algebra study

� MM (Matrix-Matrix multiplication), QR factorization
– MPI (across compute nodes) for scalability

– OpenMP (within each node) for load balancing

� Parallelize MM computation
– Divide matrices by columns

– Broadcast and compute sub-matrix

� Communication hiding
– place the MPI broadcast outside OpenMP parallel region

– overlap communication (broadcast) with computation

� Adaptive load-balancing
– A communication thread takes a smaller matrix block.

� Performance results (Table 3)
– “Hide” shows higher performance (MFLOPS) than “No Hide”.

– adaptive load-balancing increases performance

8CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

SPECseis95

� Seismic processing benchmark
– For gas and oil exploration

– FFTs (Fast Fourier Transforms) and finite-difference solvers

� Two parallel versions
– Original message-passing variant (PVM or MPI)

– Conversion to OpenMP variant

• Some issues about mixing C and Fortran codes

� Performance results (Figure 4)
– Code scales equally well for PVM and OpenMP, on SGI

Power Challenge

9CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

TLNS3D

� CFD (computational fluid dynamics)
– MPI across grids and OpenMP to parallelize each grid

� Input data sets contain multiple data blocks

� Static block assignment to MPI processes
– divide blocks into groups, assign a group to an MPI process

– MPI processes exchange data at boundaries periodically.

� Boss-worker execution model for MPI level

– Boss performs I/O, workers do numerical computations.

� Add OpenMP directives
– Exploit parallelism within each block

� Minimizing load imbalance vs. synchronization cost
– Need to adjust # MPI processes and # OpenMP threads

� No performance results in the paper!

10CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

CRETIN

� Physics application
– multiple levels of message passing and thread parallelism

� Systems
– IBM SP2 with 1464 four-processor nodes

– SGI Origin 2000 with 48 128-processor nodes

� Atomic Kinetics
– multiple zones with lots of computation per zone

– map the loop over zones to either MPI or OpenMP

– load balancing across zones (105x)

� Line Radiation Transport
– mesh sweep across multiple zones

– use both MPI and OpenMP

– boss performs memory allocation, passes zones to workers

� No performance results

11CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

OpenACC

12

Overview

� OpenACC: a set of directives to specify code and
data to offload to an accelerator (typically a GPU)
– for Fortran, C, C++

� Compiler then does a lot of work to generate a code
to run on an accelerator
– initialize the device and its runtime environment

– allocate data on the device

– move data from host memory to device memory, or initialize
it on device memory

– launch one or more computational kernels on the device

– gather results from device memory back to host memory

– deallocate data on device

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

13

Programming model

� Two loop levels
– an outer (fully parallel) loop level, called gang in OpenACC

• no synchronization between threads in different gangs

– an inner synchronous (SIMD/vector) loop level

• synchronization required

� On an NVIDIA GPU

– each gang maps to one stream multiprocessor (a CUDA
thread block)

– the inner loops map to threads within a gang executed as a
group on the cores in one stream multiprocessor

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

14

OpenACC Directives

� Data construct
– !$acc data … (Fortran)

– defines a code region where data (arrays, subarrays,
scalars) should be allocated on the device

– with clauses to decide whether data is copied to/from host
memory or just allocated on device

� Kernels construct
– !$acc kernels …

– specifies a code region to be compiled into accelerator
kernels (computation code)

– Using a loop construct inside a kernels construct, we can
specify what type of parallelism to use to execute a loop (i.e.
gangs/vectors)

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

15

OpenACC Directives (cont.)

� Parallel construct
– !$acc parallel …

– similar to OpenMP directives

– for more explicit user-specified parallelism

– immediately starts the requested number of gangs, where
each gang contains a specified number of worker threads

• Workers in each gang execute code redundantly

• When they reach ($!acc loop worker), workers parallelize
loop iterations

� Kernels construct vs Parallel construct

– kernels construct gives compiler more flexibility in scheduling
loops and decomposing iterations across gangs/workers

– But in kernels construct, loops need to be tightly nested for
the compiler to be able to generate good code

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

