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Communication Networks

� Connect

– PE’s, memory, I/O

� Key Performance Issues

– latency: time for first byte

– throughput: average bytes/second

� Possible Topologies

– bus - simple, but doesn’t scale

– ring - orders delivery of messages
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Topologies (cont)

– tree - needs to increase bandwidth near the top
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–mesh - two or three dimensions

–hypercube - needs a power of number of nodes
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Memory Systems

� Key Performance Issues

– latency: time for first byte

– throughput: average bytes/second

� Design Issues

– Where is the memory

• divided among each node

• centrally located (on communication network)

– Access by processors

• can all processors get to all memory?

• is the access time uniform?
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Coordination

� Synchronization

– protection of a single object (locks)

– coordination of processors (barriers)

� Size of a unit of work by a processor

– need to manage two issues

• load balance - processors have equal work

• coordination overhead - communication and sync.

– often called “grain” size - large grain vs. fine grain
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Sources of Parallelism

� Statements

– called “control parallel”

– can perform a series of steps in parallel

� Loops

– called “data parallel”

– most common source of parallelism

– each processor gets one (or more) iterations to perform
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Example of Parallelism

� Easy (embarrassingly parallel)

– multiple independent jobs (i.e..., different simulations)

� Scientific

– Largest users of parallel computing

– dense linear algebra (divide up matrix)

– physical system simulations (divide physical space)

� Databases 

– biggest commerical success of parallel computing (divide tuples)

• exploits semantics of relational calculus

� AI

– search problems (divide search space)

– pattern recognition and image processing (divide image)
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Metrics in Application Performance

� Speedup (often call strong scaling)

– ratio of time on n nodes to time on a single node

– hold problem size fixed

– should really compare to best serial time

– goal is linear speedup

– super-linear speedup is possible due to:

• adding more memory

• search problems

� Weak Scaling (also called Iso-Speedup)

– scale data size up with number of nodes

– goal is a flat horizontal curve

� Amdahl's Law

– max speedup is 1/(serial fraction of time)

� Computation to Communication Ratio

– goal is to maximize this ratio
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How to Write Parallel Programs

� Use old serial code 

– compiler converts it to parallel

– called the dusty deck problem

� Serial Language plus Communication Library

– no compiler changes required!

– PVM and MPI use this approach

� New language for parallel computing

– requires all code to be re-written

– hard to create a language that provides performance on 
different platforms

� Hybrid Approach

– HPF - add data distribution commands to code

– add parallel loops and synchronization operations
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Application Example - Weather

� Typical of many scientific codes

– computes results for three dimensional space

– compute results at multiple time steps

– uses equations to describe physics/chemistry of the problem

– grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

� Simplifications (for example, not in real code)

– earth is flat (no mountains)

– earth is round (poles are really flat, earth buldges at equator)

– second order properties
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� Divide Continuous space into discrete parts

– for this code, grid size is fixed and uniform

• possible to change grid size or use multiple grids

– use three grids

• two for latitude and longitude

• one for elevation

• Total of M * N * L points

� Design Choice: where is the grid point?

– left, right, or center of the grid

– in multiple dimensions this multiples: 

• for 3 dimensions have 27 possible points

Grid Points

C RL
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Variables

� One dimensional
– m - geo-potential (gravitational effects)

� Two dimensional
– pi - “shifted” surface pressure

– sigmadot - vertical component of the wind velocity

� Three dimensional (primary variables)
– <u,v> - wind velocity/direction vector

– T - temperature

– q - specific humidity

– p - pressure

� Not included
– clouds

– precipitation

– can be derived from others
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Serial Computation

� Convert equations to discrete form

� Update from time t to t + delta t
foreach longitude, latitude, altitude

ustar[i,j,k] = n * pi[i,j] * u[i,j,k]

vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]

sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end

foreach longitude, latitude, altitude

D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) +

terms in {i,j,k}{+,-}{1,2}

piq[i,j,k] = piq[i,j,k] + D * delat

similar terms for piu, piv, piT, and pi

end

foreach longitude, latitude, altitude

q[i,j,k] = piq[i,j,k]/pi[i,j,k]

u[i,j,k] = piu[i,j,k]/pi[i,j,k]

v[i,j,k] = piv[i,j,k]/pi[i,j,k]

T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end
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Shared Memory Version

� in each loop nest, iterations are independent

� use a parallel for-loop for each loop nest

� synchronize (barrier) after each loop nest

– this is overly conservative, but works

– could use a single sync variable per item, but would incur 
excessive overhead

� potential parallelism is M * N * L

� private variables: D, i, j, k

� Advantages of shared memory

– easier to get something working (ignoring performance)

� Hard to debug

– other processors can modify shared data
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Distributed Memory Weather
� decompose data to specific processors

– assign a cube to each processor

• maximize volume to surface ratio

• minimizes communication/computation ratio

– called a <block,block,block> distribution

� need to communicate {i,j,k}{+,-}{1,2} terms at boundaries

– use send/receive to move the data

– no need for barriers, send/receive operations provide sync

• sends earlier in computation too hide communication time

� Advantages

– easier to debug?

– consider data locality explicitly with data decomposition

� Problems

– harder to get the code running
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Seismic Code

� Given echo data, compute under sea map

� Computation model
– designed for a collection of workstations

– uses variation of RPC model

– workers are given an independent trace to compute

• requires little communication

• supports load balancing (1,000 traces is typical)

� Performance
– max mfops = O((F * nz * B*)1/2)

– F - single processor MFLOPS

– nz - linear dimension of input array

– B* - effective communication bandwidth

• B* = B/(1 + BL/w) ≈ B/7 for Ethernet (10msec lat., w=1400)

– real limit to performance was latency not bandwidth


