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Announcements
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Topologies (cont)

– tree - needs to increase bandwidth near the top
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–mesh - two or three dimensions

–hypercube - needs a power of number of nodes
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Memory Systems

Key Performance Issues
– latency: time for first byte
– throughput: average bytes/second

Design Issues
– Where is the memory

• divided among each node
• centrally located (on communication network)

– Access by processors
• can all processors get to all memory?
• is the access time uniform?
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Coordination

Synchronization
– protection of a single object (locks)
– coordination of processors (barriers)

Size of a unit of work by a processor
– need to manage two issues

• load balance - processors have equal work
• coordination overhead - communication and sync.

– often called “grain” size - large grain vs. fine grain



5CMSC 714 – F10  (lect 2) copyright 2006  Jeffrey K. Hollingsworth

Sources of Parallelism

Statements
– called “control parallel”
– can perform a series of steps in parallel

Loops
– called “data parallel”
– most common source of parallelism
– each processor gets one (or more) iterations to perform
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Example of Parallelism

Easy (embarrassingly parallel)
– multiple independent jobs (i.e..., different simulations)

Scientific
– Largest users of parallel computing
– dense linear algebra (divide up matrix)
– physical system simulations (divide physical space)

Databases 
– biggest commerical success of parallel computing (divide tuples)

• exploits semantics of relational calculus

AI
– search problems (divide search space)
– pattern recognition and image processing (divide image)
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Metrics in Application Performance
Speedup (often call strong scaling)
– ratio of time on n nodes to time on a single node
– hold problem size fixed
– should really compare to best serial time
– goal is linear speedup
– super-linear speedup is possible due to:

• adding more memory
• search problems

Weak Scaling (also called Iso-Speedup)
– scale data size up with number of nodes
– goal is a flat horizontal curve

Amdahl's Law
– max speedup is 1/(serial fraction of time)

Computation to Communication Ratio
– goal is to maximize this ratio
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How to Write Parallel Programs

Use old serial code 
– compiler converts it to parallel
– called the dusty deck problem

Serial Language plus Communication Library
– no compiler changes required!
– PVM and MPI use this approach

New language for parallel computing
– requires all code to be re-written
– hard to create a language that provides performance on 

different platforms

Hybrid Approach
– HPF - add data distribution commands to code
– add parallel loops and synchronization operations
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Application Example - Weather

Typical of many scientific codes
– computes results for three dimensional space
– compute results at multiple time steps
– uses equations to describe physics/chemistry of the problem
– grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

Simplifications (for example, not in real code)
– earth is flat (no mountains)
– earth is round (poles are really flat, earth buldges at equator)
– second order properties
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Divide Continuous space into discrete parts
– for this code, grid size is fixed and uniform

• possible to change grid size or use multiple grids
– use three grids

• two for latitude and longitude
• one for elevation
• Total of M * N * L points

Design Choice: where is the grid point?
– left, right, or center of the grid

– in multiple dimensions this multiples: 
• for 3 dimensions have 27 possible points

Grid Points

C RL
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Variables
One dimensional
– m - geo-potential (gravitational effects)

Two dimensional
– pi - “shifted” surface pressure
– sigmadot - vertical component of the wind velocity

Three dimensional (primary variables)
– <u,v> - wind velocity/direction vector
– T - temperature
– q - specific humidity
– p - pressure

Not included
– clouds
– precipitation
– can be derived from others
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Serial Computation
Convert equations to discrete form
Update from time t to t + delta t

foreach longitude, latitude, altitude
ustar[i,j,k] = n * pi[i,j] * u[i,j,k]
vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]
sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end
foreach longitude, latitude, altitude

D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) +
terms in {i,j,k}{+,-}{1,2}

piq[i,j,k] = piq[i,j,k] + D * delat
similar terms for piu, piv, piT, and pi

end
foreach longitude, latitude, altitude

q[i,j,k] = piq[i,j,k]/pi[i,j,k]
u[i,j,k] = piu[i,j,k]/pi[i,j,k]
v[i,j,k] = piv[i,j,k]/pi[i,j,k]
T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end
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Shared Memory Version

in each loop nest, iterations are independent
use a parallel for-loop for each loop nest
synchronize (barrier) after each loop nest
– this is overly conservative, but works
– could use a single sync variable per item, but would incur 

excessive overhead

potential parallelism is M * N * L
private variables: D, i, j, k
Advantages of shared memory
– easier to get something working (ignoring performance)

Hard to debug
– other processors can modify shared data
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Distributed Memory Weather
decompose data to specific processors
– assign a cube to each processor

• maximize volume to surface ratio
• minimizes communication/computation ratio

– called a <block,block,block> distribution
need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
– use send/receive to move the data
– no need for barriers, send/receive operations provide sync

• sends earlier in computation too hide communication time
Advantages
– easier to debug?
– consider data locality explicitly with data decomposition

Problems
– harder to get the code running
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Seismic Code
Given echo data, compute under sea map
Computation model
– designed for a collection of workstations
– uses variation of RPC model
– workers are given an independent trace to compute

• requires little communication
• supports load balancing (1,000 traces is typical)

Performance
– max mfops = O((F * nz * B*)1/2)
– F - single processor MFLOPS
– nz - linear dimension of input array
– B* - effective communication bandwidth

• B* = B/(1 + BL/w) ≈ B/7 for Ethernet (10msec lat., w=1400)
– real limit to performance was latency not bandwidth


