
1CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Metrics in Application Performance
Speedup
– ratio of time on n nodes to time on a single node
– hold problem size fixed
– should really compare to best serial time
– goal is linear speedup
– super-linear speedup is possible due to:

• adding more memory
• search problems

Iso-Speedup
– scale data size up with number of nodes
– goal is a flat horizontal curve

Amdahl's Law
– max speedup is 1/(serial fraction of time)

Computation to Communication Ratio
– goal is to maximize this ratio

2CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

How to Write Parallel Programs

Use old serial code
– compiler converts it to parallel
– called the dusty deck problem

Serial Language plus Communication Library
– no compiler changes required!
– PVM and MPI use this approach

New language for parallel computing
– requires all code to be re-written
– hard to create a language that provides performance on

different platforms

Hybrid Approach
– HPF - add data distribution commands to code
– add parallel loops and synchronization operations

3CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Application Example - Weather

Typical of many scientific codes
– computes results for three dimensional space
– compute results at multiple time steps
– uses equations to describe physics/chemistry of the problem
– grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

Simplifications (for example, not in real code)
– earth is flat (no mountains)
– earth is round (poles are really flat, earth buldges at equator)
– second order properties

4CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Divide Continuous space into discrete parts
– for this code, grid size is fixed and uniform

• possible to change grid size or use multiple grids
– use three grids

• two for latitude and longitude
• one for elevation
• Total of M * N * L points

Design Choice: where is the grid point?
– left, right, or center of the grid

– in multiple dimensions this multiples:
• for 3 dimensions have 27 possible points

Grid Points

C RL

5CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Variables
One dimensional
– m - geo-potential (gravitational effects)

Two dimensional
– pi - “shifted” surface pressure
– sigmadot - vertical component of the wind velocity

Three dimensional (primary variables)
– <u,v> - wind velocity/direction vector
– T - temperature
– q - specific humidity
– p - pressure

Not included
– clouds
– precipitation
– can be derived from others

6CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Serial Computation
Convert equations to discrete form
Update from time t to t + delta t

foreach longitude, latitude, altitude
ustar[i,j,k] = n * pi[i,j] * u[i,j,k]
vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]
sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end
foreach longitude, latitude, altitude

D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) +
terms in {i,j,k}{+,-}{1,2}

piq[i,j,k] = piq[i,j,k] + D * delat
similar terms for piu, piv, piT, and pi

end
foreach longitude, latitude, altitude

q[i,j,k] = piq[i,j,k]/pi[i,j,k]
u[i,j,k] = piu[i,j,k]/pi[i,j,k]
v[i,j,k] = piv[i,j,k]/pi[i,j,k]
T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end

7CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Shared Memory Version

in each loop nest, iterations are independent
use a parallel for-loop for each loop nest
synchronize (barrier) after each loop nest
– this is overly conservative, but works
– could use a single sync variable per item, but would incur

excessive overhead

potential parallelism is M * N * L
private variables: D, i, j, k
Advantages of shared memory
– easier to get something working (ignoring performance)

Hard to debug
– other processors can modify shared data

8CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Distributed Memory Weather
decompose data to specific processors
– assign a cube to each processor

• maximize volume to surface ratio
• minimizes communication/computation ratio

– called a <block,block,block> distribution
need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
– use send/receive to move the data
– no need for barriers, send/receive operations provide sync

• sends earlier in computation too hide communication time
Advantages
– easier to debug?
– consider data locality explicitly with data decomposition

Problems
– harder to get the code running

9CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Seismic Code
Given echo data, compute under sea map
Computation model
– designed for a collection of workstations
– uses variation of RPC model
– workers are given an independent trace to compute

• requires little communication
• supports load balancing (1,000 traces is typical)

Performance
– max mfops = O((F * nz * B*)1/2)
– F - single processor MFLOPS
– nz - linear dimension of input array
– B* - effective communication bandwidth

• B* = B/(1 + BL/w) ≈ B/7 for Ethernet (10msec lat., w=1400)
– real limit to performance was latency not bandwidth

10CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Database Applications

Too much data to fit in memory (or sometimes disk)
– data mining applications (K-Mart has a 4-5TB database)
– imaging applications (NASA has a site with 0.25 petabytes)

• use a fork lift to load tapes by the pallet

Sources of parallelism
– within a large transaction
– among multiple transactions

Join operation
– form a single table from two tables based on a common field
– try to split join attribute in disjoint buckets

• if know data distribution is uniform its easy
• if not, try hashing

11CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Speedup in Join parallelism

Books claims a speed up of1/p2 is possible
– split each relation into p buckets

• each bucket is a disjoint subset of the joint attribute
– each processor only has to consider N/p tuples per relation

• join is O(n2) so each processor does O((N/p)2) work
• so spedup is O(N2/p2)/O(N2) = O(1/p2)

this is a lie!
• could split into 1/p buckets on one processor
• time would then be O(p * (N/p)2) = O(N2/p)
• so speedup is O(N2/p2)/O(N2/p) = O(1/p)

– Amdahls law is not violated

12CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Parallel Search (TSP)
may appear to be faster than 1/n
– but this is not really the case either

Algorithm
– compute a path on a processor

• if our path is shorter than the shortest one, send it to the
others.

• stop searching a path when it is longer than the shortest.
– before computing next path, check for word of a new min

path
– stop when all paths have been explored.

Why it appears to be faster than 1/n speedup
– we found the a path that was shorter sooner
– however, the reason for this is a different search order!

13CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Ensuring a fair speedup

Tserial = faster of
– best known serial algorithm
– simulation of parallel computation

• use parallel algorithm
• run all processes on one processor

– parallel algorithm run on one processor

If it appears to be super-linear
– check for memory hierarchy

• increased cache or real memory may be reason
– verify order operations is the same in parallel and serial cases

14CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Quantitative Speedup

Consider master-worker
– one master and n worker processes
– communication time increases as a linear function of n
Tp = TCOMPp + TCOMMp

TCOMPp = Ts/P
1/Sp= Tp/Ts = 1/P + TCOMMp/Ts

TCOMMp is P * TCOMM1

1/Sp=1/p + p * TCOMM1/Ts = 1/P + P/r1

where r1 = Ts/TCOMM1

d(1/Sp)/dP = 0 --> Popt = r1
1/2 and Sopt= 0.5 r1

1/2

For hierarchy of masters
– TCOMMp = (1+logP)TCOMM1

– Popt= r1 and Sopt = r1/(1 + log r1)

15CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI
Goals:
– Standardize previous message passing:

• PVM, P4, NX
– Support copy free message passing
– Portable to many platforms

Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a name shifted version

Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

16CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Communicators

Provide a named set of processes for communication
All processes within a communicator can be named
– numbered from 0…n-1

Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive

All programs start will MPI_COMM_WORLD

17CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Non-Blocking Functions

Two Parts
– post the operation
– wait for results

Also includes a poll option
– checks if the operation has finished

Semantics
– must not alter buffer while operation is pending

18CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Misc.

MPI Types
– All messages are typed

• base types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

What’s not in MPI-1
– process creation
– I/O
– one sided communication

19CMSC 714 – F06 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Housekeeping Calls

Include <mpi.h> in your program
If using mpich, …

First call MPI_Init(&argc, &argv)
MPI_Comm_rank(MPI_COMM_WORLD, &myrank)
– Myrank is set to id of this process

MPI_Wtime
– Returns wall time

At the end, call MPI_Finalize()

