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Computing Environment
Cost Effective High Performance Computing
– Dedicated servers are expensive
– Non-dedicated machines are useful 

• high processing power(~1GHz), fast network (100Mbps+)
• Long idle time(~50%), low resource usage

M
achines in office

Need cycles to run 
my simulations

Computer Lab

Supercomputer

Clustered server

W/S’s and PC’s

Network
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OS Support For Parallel Computing

Many applications need raw compute power
– Computer H/W and S/W Simulations
– Scientific/Engineering Computation
– Data Mining, Optimization problems 

Goal
– Exploit computation cycles on idle workstations

Projects
– Condor
– Linger-Longer
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Issues

Scheduling
– What jobs to run on which machines?
– When to start / stop using idle machines?

Transparency
– Can applications execute as if on home machine?

Checkpoints
– Can work be saved if job is interrupted?
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What Is Condor?

Condor 
– Exploits computation cycles in collections of 

• workstations
• dedicated clusters

– Manages both
• resources (machines) 
• resource requests (jobs)

– Has several mechanisms
• ClassAd Matchmaking 
• Process checkpoint/ restart / migration
• Remote System Calls
• Grid Awareness

– Scalable to thousands of jobs / machines
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Condor – Dedicated Resources

Dedicated Resources 
– Compute Clusters

Manage
– Node monitoring, 

scheduling
– Job launch, monitor & 

cleanup
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Condor – Non-dedicated Resources

Examples
– Desktop workstations in offices
– Workstations in student labs

Often idle
– Approx 70% of the time!

Condor policy
– Use workstation if idle
– Interrupt and move job if user activity detected
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Mechanisms in Condor

Transparent Process Checkpoint / Restart
Transparent Process Migration
Transparent Redirection of I/O 
– Condor’s Remote System Calls
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CondorView Usage Graph
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What is ClassAd Matchmaking?

Condor uses ClassAd Matchmaking to make sure 
that work gets done within the constraints of both 
users and owners.
Users (jobs) have constraints:
– “I need an Alpha with 256 MB RAM”

Owners (machines) have constraints:
– “Only run jobs when I am away from my desk and never run 

jobs owned by Bob.”

Semi-structured data  --- no fixed schema
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Some Challenges

Condor does whatever it takes to run your jobs, even 
if some machines…
– Crash (or are disconnected)
– Run out of disk space
– Don’t have your software installed 
– Are frequently needed by others
– Are far away & managed by someone else
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Condor’s Standard Universe

Condor can support various combinations of 
features/environments 
– In different “Universes”

Different Universes provide different functionality 
– Vanilla

• Run any Serial Job
– Scheduler

• Plug in a meta-scheduler
– Standard

• Support for transparent process checkpoint and restart
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Process Checkpointing

Condor’s Process Checkpointing mechanism saves 
all the state of a process into a checkpoint file
– Memory, CPU, I/O, etc.

The process can then be restarted 
– From right where it left off

Typically no changes to your job’s source code 
needed
– However, your job must be relinked with Condor’s Standard 

Universe support library
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When Will Condor Checkpoint Your Job?

Periodically, if desired
– For fault tolerance

To free the machine to do a higher priority task 
(higher priority job, or a job from a user with higher 
priority)
– Preemptive-resume scheduling

When you explicitly run 
– condor_checkpoint
– condor_vacate
– condor_off
– condor_restart



14CMSC 714 –F06 (lect OS) copyright 2003  Jeffrey K. Hollingsworth

Condor Daemon Layout

Personal Condor / Central Manager

master

collector

negotiator

schedd

startd

= Process Spawned
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Layout of the Condor Pool

Central Manager (Frieda’s)

master

collector

negotiator

schedd

startd

= ClassAd
Communication
Pathway

= Process Spawned

Desktop

schedd

startd
master

Desktop

schedd

startd
master

Cluster Node

master

startd

Cluster Node

master

startd
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Access to Data in Condor

Use Shared Filesystem if available

No shared filesystem?
– Remote System Calls (in the Standard Universe)
– Condor File Transfer Service

• Can automatically send back changed files
• Atomic transfer of multiple files

– Remote I/O Proxy Socket
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Standard Universe Remote System Calls

I/O System calls trapped
– Sent back to submit machine

Allows Transparent Migration Across Domains
– Checkpoint on machine A, restart on B

No Source Code changes required
Language Independent
Opportunities 
– For Application Steering

• Condor tells customer process “how” to open files
– For compression on the fly
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Customer Job

Job Startup

Submit

Schedd

Shadow

Startd

Starter

Condor
Syscall Lib
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Job
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Exploiting Idle Cycles 
in Networks of Workstations

Kyung Dong Ryu
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High Performance Computing in NOW
Many systems support harvesting idle machines
– Traditional Approach : Coarse-Grained Cycle Stealing

• while owner is away: send guest job and run
• when owner returns: stop, then

– migrate guest job: Condor, NOW system 
– suspend or kill guest job: Butler, LSF, DQS system

But…
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Additional CPU Time and Memory is Available
When a user is active
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– CPU usage is < 10%, 75% of time

Trace from UC Berkeley

– 30 MB memory is available, 70% of time
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Questions

Can we exploit fine grained idle resources?
– For sequential programs and parallel programs
– Improve throughput

How to reduce effect on user?
– Two level CPU scheduling
– Memory limits
– Network and I/O throttling
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Fine-Grain Idle Cycles

Coarse-Grain Idle Cycles
– (t1,t3): Keyboard/mouse events
– (t4,~): High CPU usage
– Recruitment threshold

Fine-Grain Idle Cycles
– All empty slots
– Whenever resource(CPU) is not used

Non-idleIdle Idle Non-idle

Recruitment
Threshold

Keyboard/Mouse Events

CPU
Usage

t1 t2 t3 t4
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Linger Longer: Fine-Grain Cycle Stealing

Goals:
– Harvest more available resources 
– Limit impact on local jobs

Technique: Lower Guest Job’s Resource Priority
– Exploit fine-grained idle intervals even when user is active

• Starvation-level low CPU priority
• Dynamically limited memory use
• Dynamically throttled I/O and network bandwidth

Adaptive Migration
– No need to move guest job to avoid local job delay
– Could move guest job to improve guest performance
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Adaptive Migration
When Migration Benefit overweighs Migration Cost

– Non-idle_Period ≥ Linger_Time + Migration_Cost / Non-idle_Usage
– Linger_Time ∝ Migration_Cost / Non-idle_Usage

• Migration_cost = Suspend_Time(source) + 
Process_Size/Network_Bandwidth +  Resume_Time(dest.)

MIGRATION

NO MIGRATION

GUESTJOB
LOCAL JOB
MIGRATION

MIGRATION COST

NON-IDLE PERIOD

t0

t2

t1

t3

t4

tf2

tf1

N
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sage

Nd A

Nd B

Nd A
LINGER TIME



28CMSC 714 –F06 (lect OS) copyright 2003  Jeffrey K. Hollingsworth

Need a Suite of Mechanisms

Policy:
– Most unused resources should be available
– Resource should be quickly revoked when local jobs reclaim

Dynamic Bounding Mechanisms for:
1. CPU 
2. Memory
3. I/O Bandwidth
4. Network Bandwidth

Goal: maximize usage of idle resources
Constraint: limit impact on local jobs
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CPU bounding: Is Unix “nice” sufficient ?

CPU priority is not strict
– run two empty loop processes (guest: nice 19)

OS Host Guest

Solaris (SunOS 5.5) 84% 15%
Linux (2.0.32) 91% 8%
OSF1 99% 0%
AIX (4.2) 60% 40%

Why ?
– Anti-Starvation Policy
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CPU Bounding: Starvation Level Priority
Original Linux CPU Scheduler 
– One Level : process priority
– Run-time Scheduling Priority

• nice value & remaining time quanta
• Ti = 20 - nice_level + 1/2 * Ti-1

– Low priority process can preempt high priority process

Extended Linux CPU Scheduler
– Two Level : 1) process class, 2) priority
– If runnable host processes exist

• Schedule a host process as in unmodified scheduler
– Only when no host process is runnable

• Schedule a guest process
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Memory Bounding: Page Limits
Extended page replacement algorithm

Adaptive Page-Out Speed
– When a host job steals a guest’s page, 

page-out multiple pages 
• faster than default

High Limit

Low Limit

Priority to Host Job

Priority to Guest Job

Based only on LRU

M
ai

n 
M

em
or

y 
Pa

ge
s

– No limit on taking free pages

– High Limit : 
• Maximum pages guest can hold

– Low Limit  : 
• Minimum pages guaranteed to guest
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Experiment: Memory Bounding
Prioritized Memory Page Replacement
– Total Available Memory : 180MB
– Guest Memory Thresholds: High Limit (70MB), Low Limit (50MB)
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Experiment: Nice vs. CPU & Memory Bounding
Large Memory Footprint Job
– Each job takes 82 sec to run in isolation

Policy and Setup Host time 
 (secs) 

Guest time 
 (secs) 

Host 
Delay 

Host starts then guest,  
    Guest niced 19 89 176 8.0% 
    Linger priority 83 165 0.8% 
Guest starts then host  
    Guest niced 19 > 5 hours > 5 hours > 2,000% 
    Linger priority 99 255 8.1% 

 
– Host-then-guest:

• Reduce host job delay 8% to 0.8%
– Guest-then-host:

• Nice causes memory thrashing 
• CPU & memory bounding serializes the execution 
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I/O and Network Throttling
Problem 1: Guest I/O & comm. can slow down local jobs
Problem 2: Migration/checkpoint bothers local users

Policy: Limit guest I/O and comm. bandwidth

– Only when host I/O or communication is active
Mechanism : Rate Windows

– Keep track of I/O rate by host and guest
– throttle guest I/O rate when host I/O is active

Implementation: a loadable kernel module

– Highly portable and deployable
– Light-weight : I/O call intercept
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I/O Throttling Mechanism : Rate Windows
Regulate I/O Rate

Regulated
Process ?

Exceeds
Target Rate ?

Compute 
delay, split

& sleep

Avg.
Rate

Target
Rate

Yes Yes

No No

Application
Library
Kernel

Application
Library
Kernel

Rate Windows

Request split

I/O or
Comm.
Request

delay < dmin : 
ignore

delay > dmax: 
split req:
sleep dmax

otherwise:
sleep delay

M seconds

Avg. Rate

4kB 60kB 12kB 16kB
100
msec

500
msec

75
msec

80
msec

N items
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Experiment: I/O Throttling
tar programs as host and guest jobs
– Guest I/O Limit : 500 kB/sec (~10%)
– Throttling Threshold : Lo: 500 kB/sec Hi: 1000 kB/s
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Dilation Factor in I/O Throttling
File I/O rate ≠ disk I/O rate
– Buffer Cache, Prefetching

Control disk I/O by throttling file I/O
– Adjust delay using 

• dilation factor = avg. disk I/O rate / avg. file I/O rate
– Compile test (I/O Limit: 500kB/s)

0

500

1000

1500

2000

0 10 20 30 40 50
Time (sec)

R
at

e 
(K

B
/s

)

File I/O
Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

Time (sec)

R
at

e 
(K

B
/s

)
File I/O
Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60
Time (sec)

R
at

e 
(K

B
/s

)

File I/O
Disk I/O

(a) No limit (b) File I/O limit (c) Disk I/O limit



38CMSC 714 –F06 (lect OS) copyright 2003  Jeffrey K. Hollingsworth

Experiment: Network Throttling
Guest job migration vs. httpd as a host job
– Guest job migration disrupts host job communication
– Throttling migration when host job comm. is active
– Guest job comm. Limit: 500 kB/s

Without Comm. Throttling
Lose b/w to migration

With Comm. Throttling
Take full b/w immediately
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Guest Job Performance

– Overall, LL improves 50%~70% over IE
– Less improvement for larger jobs (lu.B)

• Only 36% improvement for lu.B.30m
• Less memory is available while non-idle

– LF is slightly better than LL
– Less Variation for LL

• lu.B.30m: 23.6% for LL, 47.5% for LF
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Host Job Slowdown

– LL/LF delays less for small and medium size jobs
• 0.8%~1.1% for LL/LF, 1.4%~2.3% for PM/IE
• Non-prioritized migration operations of PM/IE

– More delay for large jobs
• Memory contention
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Conclusions
Identified opportunities for fine-grain idle resources
Linger-Longer can exploit up to 60% more idle time
– Fine-Grain Cycle Stealing
– Adaptive Migration

Linger-Longer can improve parallel applications in NOW
A suite of mechanisms insulates local job’s performance
– CPU scheduling: starvation-level priority
– Memory Priority: lower and upper limits 
– I/O and Network Bandwidth Throttling: Rate Windows

Linger-Longer really improves
– Guest job throughput by 50% to 70%
– With a 3% host job slowdown
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