
1CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Computing Environment
Cost Effective High Performance Computing
– Dedicated servers are expensive
– Non-dedicated machines are useful

• high processing power(~1GHz), fast network (100Mbps+)
• Long idle time(~50%), low resource usage

M
achines in office

Need cycles to run
my simulations

Computer Lab

Supercomputer

Clustered server

W/S’s and PC’s

Network

2CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

OS Support For Parallel Computing

Many applications need raw compute power
– Computer H/W and S/W Simulations
– Scientific/Engineering Computation
– Data Mining, Optimization problems

Goal
– Exploit computation cycles on idle workstations

Projects
– Condor
– Linger-Longer

3CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Issues

Scheduling
– What jobs to run on which machines?
– When to start / stop using idle machines?

Transparency
– Can applications execute as if on home machine?

Checkpoints
– Can work be saved if job is interrupted?

4CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

What Is Condor?

Condor
– Exploits computation cycles in collections of

• workstations
• dedicated clusters

– Manages both
• resources (machines)
• resource requests (jobs)

– Has several mechanisms
• ClassAd Matchmaking
• Process checkpoint/ restart / migration
• Remote System Calls
• Grid Awareness

– Scalable to thousands of jobs / machines

5CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Condor – Dedicated Resources

Dedicated Resources
– Compute Clusters

Manage
– Node monitoring,

scheduling
– Job launch, monitor &

cleanup

6CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Condor – Non-dedicated Resources

Examples
– Desktop workstations in offices
– Workstations in student labs

Often idle
– Approx 70% of the time!

Condor policy
– Use workstation if idle
– Interrupt and move job if user activity detected

7CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Mechanisms in Condor

Transparent Process Checkpoint / Restart
Transparent Process Migration
Transparent Redirection of I/O
– Condor’s Remote System Calls

8CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

CondorView Usage Graph

9CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

What is ClassAd Matchmaking?

Condor uses ClassAd Matchmaking to make sure
that work gets done within the constraints of both
users and owners.
Users (jobs) have constraints:
– “I need an Alpha with 256 MB RAM”

Owners (machines) have constraints:
– “Only run jobs when I am away from my desk and never run

jobs owned by Bob.”

Semi-structured data --- no fixed schema

10CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Some Challenges

Condor does whatever it takes to run your jobs, even
if some machines…
– Crash (or are disconnected)
– Run out of disk space
– Don’t have your software installed
– Are frequently needed by others
– Are far away & managed by someone else

11CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Condor’s Standard Universe

Condor can support various combinations of
features/environments
– In different “Universes”

Different Universes provide different functionality
– Vanilla

• Run any Serial Job
– Scheduler

• Plug in a meta-scheduler
– Standard

• Support for transparent process checkpoint and restart

12CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Process Checkpointing

Condor’s Process Checkpointing mechanism saves
all the state of a process into a checkpoint file
– Memory, CPU, I/O, etc.

The process can then be restarted
– From right where it left off

Typically no changes to your job’s source code
needed
– However, your job must be relinked with Condor’s Standard

Universe support library

13CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

When Will Condor Checkpoint Your Job?

Periodically, if desired
– For fault tolerance

To free the machine to do a higher priority task
(higher priority job, or a job from a user with higher
priority)
– Preemptive-resume scheduling

When you explicitly run
– condor_checkpoint
– condor_vacate
– condor_off
– condor_restart

14CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Condor Daemon Layout

Personal Condor / Central Manager

master

collector

negotiator

schedd

startd

= Process Spawned

15CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Layout of the Condor Pool

Central Manager (Frieda’s)

master

collector

negotiator

schedd

startd

= ClassAd
Communication
Pathway

= Process Spawned

Desktop

schedd

startd
master

Desktop

schedd

startd
master

Cluster Node

master

startd

Cluster Node

master

startd

16CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Access to Data in Condor

Use Shared Filesystem if available

No shared filesystem?
– Remote System Calls (in the Standard Universe)
– Condor File Transfer Service

• Can automatically send back changed files
• Atomic transfer of multiple files

– Remote I/O Proxy Socket

17CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Standard Universe Remote System Calls

I/O System calls trapped
– Sent back to submit machine

Allows Transparent Migration Across Domains
– Checkpoint on machine A, restart on B

No Source Code changes required
Language Independent
Opportunities
– For Application Steering

• Condor tells customer process “how” to open files
– For compression on the fly

18CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Customer Job

Job Startup

Submit

Schedd

Shadow

Startd

Starter

Condor
Syscall Lib

19CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Job

Fork

startershadow

Home
File

System

I/O Library

I/O Server I/O Proxy
Secure Remote I/O

Local System Calls

Local I/O
(Chirp)

Execution SiteSubmission Site

20CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Job Submission Machine

Job Execution Site

Job

Condor-G
GridManager

GASS
Server

Condor-G
Scheduler

Persistant
Job Queue

End User
Requests

Condor
Shadow

Process for
Job X

Condor-G
Collector

Fork

Globus Daemons
+

Local Site Scheduler

[See Figure 1]

Fork

Condor
Daemons

Job X

Condor S ystem Call

Trapping & C heckpoint
Library

Fork

Resource

In formation

Transfer Job X

Redi rected

System Call
Data

21CMSC 412 - S96 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Exploiting Idle Cycles
in Networks of Workstations

Kyung Dong Ryu

© Copyright 2001, K.D. Ryu, All Rights Reserved.

Ph.D. Defense

22CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

High Performance Computing in NOW
Many systems support harvesting idle machines
– Traditional Approach : Coarse-Grained Cycle Stealing

• while owner is away: send guest job and run
• when owner returns: stop, then

– migrate guest job: Condor, NOW system
– suspend or kill guest job: Butler, LSF, DQS system

But…

23CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Additional CPU Time and Memory is Available
When a user is active

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
CPU Usage (%)

Cu
m

ul
at

iv
e

Di
st

r. all
idle
busy

– CPU usage is < 10%, 75% of time

Trace from UC Berkeley

– 30 MB memory is available, 70% of time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60
memory size (MB)

P
ro

ba
bi

lit
y

all
idle
busy

Total: 64MB

24CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Questions

Can we exploit fine grained idle resources?
– For sequential programs and parallel programs
– Improve throughput

How to reduce effect on user?
– Two level CPU scheduling
– Memory limits
– Network and I/O throttling

25CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Fine-Grain Idle Cycles

Coarse-Grain Idle Cycles
– (t1,t3): Keyboard/mouse events
– (t4,~): High CPU usage
– Recruitment threshold

Fine-Grain Idle Cycles
– All empty slots
– Whenever resource(CPU) is not used

Non-idleIdle Idle Non-idle

Recruitment
Threshold

Keyboard/Mouse Events

CPU
Usage

t1 t2 t3 t4

26CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Linger Longer: Fine-Grain Cycle Stealing

Goals:
– Harvest more available resources
– Limit impact on local jobs

Technique: Lower Guest Job’s Resource Priority
– Exploit fine-grained idle intervals even when user is active

• Starvation-level low CPU priority
• Dynamically limited memory use
• Dynamically throttled I/O and network bandwidth

Adaptive Migration
– No need to move guest job to avoid local job delay
– Could move guest job to improve guest performance

27CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Adaptive Migration
When Migration Benefit overweighs Migration Cost

– Non-idle_Period ≥ Linger_Time + Migration_Cost / Non-idle_Usage
– Linger_Time ∝ Migration_Cost / Non-idle_Usage

• Migration_cost = Suspend_Time(source) +
Process_Size/Network_Bandwidth + Resume_Time(dest.)

MIGRATION

NO MIGRATION

GUESTJOB
LOCAL JOB
MIGRATION

MIGRATION COST

NON-IDLE PERIOD

t0

t2

t1

t3

t4

tf2

tf1

N
onidle U

sage

Nd A

Nd B

Nd A
LINGER TIME

28CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Need a Suite of Mechanisms

Policy:
– Most unused resources should be available
– Resource should be quickly revoked when local jobs reclaim

Dynamic Bounding Mechanisms for:
1. CPU
2. Memory
3. I/O Bandwidth
4. Network Bandwidth

Goal: maximize usage of idle resources
Constraint: limit impact on local jobs

29CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

CPU bounding: Is Unix “nice” sufficient ?

CPU priority is not strict
– run two empty loop processes (guest: nice 19)

OS Host Guest

Solaris (SunOS 5.5) 84% 15%
Linux (2.0.32) 91% 8%
OSF1 99% 0%
AIX (4.2) 60% 40%

Why ?
– Anti-Starvation Policy

30CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

CPU Bounding: Starvation Level Priority
Original Linux CPU Scheduler
– One Level : process priority
– Run-time Scheduling Priority

• nice value & remaining time quanta
• Ti = 20 - nice_level + 1/2 * Ti-1

– Low priority process can preempt high priority process

Extended Linux CPU Scheduler
– Two Level : 1) process class, 2) priority
– If runnable host processes exist

• Schedule a host process as in unmodified scheduler
– Only when no host process is runnable

• Schedule a guest process

31CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Memory Bounding: Page Limits
Extended page replacement algorithm

Adaptive Page-Out Speed
– When a host job steals a guest’s page,

page-out multiple pages
• faster than default

High Limit

Low Limit

Priority to Host Job

Priority to Guest Job

Based only on LRU

M
ai

n
M

em
or

y
Pa

ge
s

– No limit on taking free pages

– High Limit :
• Maximum pages guest can hold

– Low Limit :
• Minimum pages guaranteed to guest

32CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Experiment: Memory Bounding
Prioritized Memory Page Replacement
– Total Available Memory : 180MB
– Guest Memory Thresholds: High Limit (70MB), Low Limit (50MB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

0 20 40 60 80 100 120 140 160 180 200
time (sec)

m
em

or
y(

M
B

)

host job
memory

guest job
memory

High Limit

Low Limit

33CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Experiment: Nice vs. CPU & Memory Bounding
Large Memory Footprint Job
– Each job takes 82 sec to run in isolation

Policy and Setup Host time
 (secs)

Guest time
 (secs)

Host
Delay

Host starts then guest,
 Guest niced 19 89 176 8.0%
 Linger priority 83 165 0.8%
Guest starts then host
 Guest niced 19 > 5 hours > 5 hours > 2,000%
 Linger priority 99 255 8.1%

– Host-then-guest:

• Reduce host job delay 8% to 0.8%
– Guest-then-host:

• Nice causes memory thrashing
• CPU & memory bounding serializes the execution

34CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

I/O and Network Throttling
Problem 1: Guest I/O & comm. can slow down local jobs
Problem 2: Migration/checkpoint bothers local users

Policy: Limit guest I/O and comm. bandwidth

– Only when host I/O or communication is active
Mechanism : Rate Windows

– Keep track of I/O rate by host and guest
– throttle guest I/O rate when host I/O is active

Implementation: a loadable kernel module

– Highly portable and deployable
– Light-weight : I/O call intercept

35CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

I/O Throttling Mechanism : Rate Windows
Regulate I/O Rate

Regulated
Process ?

Exceeds
Target Rate ?

Compute
delay, split

& sleep

Avg.
Rate

Target
Rate

Yes Yes

No No

Application
Library
Kernel

Application
Library
Kernel

Rate Windows

Request split

I/O or
Comm.
Request

delay < dmin :
ignore

delay > dmax:
split req:
sleep dmax

otherwise:
sleep delay

M seconds

Avg. Rate

4kB 60kB 12kB 16kB
100
msec

500
msec

75
msec

80
msec

N items

36CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Experiment: I/O Throttling
tar programs as host and guest jobs
– Guest I/O Limit : 500 kB/sec (~10%)
– Throttling Threshold : Lo: 500 kB/sec Hi: 1000 kB/s

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90

time (sec)

I0
 ra

te
 (k

B
/s

)

host
guest

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100
time (sec)

IO
 ra

te
 (k

B
/s

) host
guest

Without I/O Throttling
Host tar takes 72 seconds

With I/O Throttling
Host tar takes 42 seconds

37CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Dilation Factor in I/O Throttling
File I/O rate ≠ disk I/O rate
– Buffer Cache, Prefetching

Control disk I/O by throttling file I/O
– Adjust delay using

• dilation factor = avg. disk I/O rate / avg. file I/O rate
– Compile test (I/O Limit: 500kB/s)

0

500

1000

1500

2000

0 10 20 30 40 50
Time (sec)

R
at

e
(K

B
/s

)

File I/O
Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

Time (sec)

R
at

e
(K

B
/s

)
File I/O
Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60
Time (sec)

R
at

e
(K

B
/s

)

File I/O
Disk I/O

(a) No limit (b) File I/O limit (c) Disk I/O limit

38CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Experiment: Network Throttling
Guest job migration vs. httpd as a host job
– Guest job migration disrupts host job communication
– Throttling migration when host job comm. is active
– Guest job comm. Limit: 500 kB/s

Without Comm. Throttling
Lose b/w to migration

With Comm. Throttling
Take full b/w immediately

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)

C
om

m
. B

an
dw

id
th

 (k
B/

s) guest migr

w eb server

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)
C

om
m

. B
an

dw
id

th
 (k

B/
s) guest migr

w eb server

39CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Guest Job Performance

– Overall, LL improves 50%~70% over IE
– Less improvement for larger jobs (lu.B)

• Only 36% improvement for lu.B.30m
• Less memory is available while non-idle

– LF is slightly better than LL
– Less Variation for LL

• lu.B.30m: 23.6% for LL, 47.5% for LF

0.0

1.0

2.0

3.0

4.0

5.0

6.0

mg.W.1m mg.W.30m sp.A.10m lu.B.1.5m lu.B.30m

Th
ro

ug
hp

ut
 (b

as
e=

8)

LL LF PM IE

40CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Host Job Slowdown

– LL/LF delays less for small and medium size jobs
• 0.8%~1.1% for LL/LF, 1.4%~2.3% for PM/IE
• Non-prioritized migration operations of PM/IE

– More delay for large jobs
• Memory contention

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

mg.W.1m mg.W.30m sp.A.10m lu.B.1.5m lu.B.30m

ho
st

 d
el

ay
 (%

)

LL LF PM IE

41CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Conclusions
Identified opportunities for fine-grain idle resources
Linger-Longer can exploit up to 60% more idle time
– Fine-Grain Cycle Stealing
– Adaptive Migration

Linger-Longer can improve parallel applications in NOW
A suite of mechanisms insulates local job’s performance
– CPU scheduling: starvation-level priority
– Memory Priority: lower and upper limits
– I/O and Network Bandwidth Throttling: Rate Windows

Linger-Longer really improves
– Guest job throughput by 50% to 70%
– With a 3% host job slowdown

42CMSC 714 –F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Related Work

Idle Cycle Stealing Systems
– Condor [Litzkow88]
– NOW project [Anderson95]
– Butler [Dannenberg85], LSF [Green93], DQS [Zhou93]

Process Migration in OS
– Sprite [Douglis 91], Mosix [Barak 95]

Idle Memory Stealing Systems
– Dodo [Acharya 99], GMS [Freely 95]
– Cooperative Caching [Dahlin 94][Sarkar 96]

Parallel Programs on Non-dedicated Workstations
– Reconfiguration [Acharya 97]
– MIST/MPVM [Clark 95], Silk-NOW [Brumofe 97]
– CARMI [Pruyne 95] (Master-worker model)

Performance Isolation
– Eclipse [Bruno 98]
– Resource container [Banga 99]

