Computing Environment

e Cost Effective High Performance Computing
— Dedicated servers are expensive
— Non-dedicated machines are useful
 high processing power(~1GHz), fast network (100Mbps+)
* Long idle time(~50%), low resource usage

-
— = |[TTTJ

] [=] [=9] [@a
] E el | | .

l Computer Lab I ;

Need cycles to run

my simulations

o o
o o
o o
o o

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

OS Support For Parallel Computing

e Many applications need raw compute power
— Computer H/W and S/W Simulations
— Scientific/Engineering Computation
— Data Mining, Optimization problems

e Goal
— Exploit computation cycles on idle workstations

e Projects
— Condor
— Linger-Longer

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

ISsues

e Scheduling
— What jobs to run on which machines?
— When to start / stop using idle machines?

e T[ransparency
— Can applications execute as if on home machine?

e Checkpoints
— Can work be saved if job is interrupted?

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

What Is Condor?

e Condor

— EXxploits computation cycles in collections of
« workstations
 dedicated clusters

— Manages both
e resources (machines)
e resource requests (jobs)

— Has several mechanisms
» ClassAd Matchmaking
* Process checkpoint/ restart / migration
 Remote System Calls
e Grid Awareness

— Scalable to thousands of jobs / machines

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Condor — Dedicated Resources

e Dedicated Resources

— Compute Clusters

e Manage

— Node monitoring,

scheduling
— Job launch

o3
IS
[=
o
S

cleanup

copyright 2003 Jeffrey K. Hollingsworth

CMSC 714 —FO06 (lect OS)

Condor — Non-dedicated Resources

e Examples
— Desktop workstations in offices
— Workstations in student labs

e Oftenidle
— Approx 70% of the time!

e Condor policy
— Use workstation if idle
— Interrupt and move job if user activity detected

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Mechanisms in Condor

e Transparent Process Checkpoint / Restart
e Transparent Process Migration

e Transparent Redirection of I/O
— Condor’'s Remote System Calls

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

CondorView Usage Graph

From FriJun 08 124303 COT 2007 to FriJun 159121620 COT 2001

710.0
Tatal
17 E Candar
3550 Tatal
[dle
177.5
Tatal
Qwner
0.0
S5at 9 Sun 10 kon 11 Tue 12 Wwed 13 Thu 14 Frils
Configure. .. Zoom | Zoom Dut Feszet Aot

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 8

What is ClassAd Matchmaking?

e Condor uses ClassAd Matchmaking to make sure
that work gets done within the constraints of both
users and owners.

e Users (jobs) have constraints:
— “I need an Alpha with 256 MB RAM”

e Owners (machines) have constraints:

— “Only run jobs when | am away from my desk and never run
jobs owned by Bob.”

e Semi-structured data --- no fixed schema

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

Some Challenges

e Condor does whatever it takes to run your jobs, even
If some machines...
— Crash (or are disconnected)
— Run out of disk space
— Don’t have your software installed
— Are frequently needed by others
— Are far away & managed by someone else

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

10

Condor’'s Standard Universe

e Condor can support various combinations of
features/environments
— In different “Universes”

e Different Universes provide different functionality
— Vanilla
* Run any Serial Job
— Scheduler
e Plug in a meta-scheduler
— Standard
» Support for transparent process checkpoint and restart

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 11

Process Checkpointing

e Condor’s Process Checkpointing mechanism saves
all the state of a process into a checkpoint file
— Memory, CPU, I/O, etc.

e The process can then be restarted
— From right where it left off
e Typically no changes to your job’s source code

needed

— However, your job must be relinked with Condor’s Standard
Universe support library

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 12

When Will Condor Checkpoint Your Job?

e Periodically, If desired
— For fault tolerance

e To free the machine to do a higher priority task
(higher priority job, or a job from a user with higher
priority)

— Preemptive-resume scheduling

e \When you explicitly run

— condor_checkpoint
— condor_vacate

— condor_off

— condor_restart

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

13

-------- = Process Spawn

Condor Daemon Layout

ed

/ Personal Condor / Central Manager \

CMSC 714 —FO06 (lect OS)

\. - y,

copyright 2003 Jeffrey K. Hollingsworth

14

Layout of the Condor Pool

_ 4)
""""" = Process Spawned / Central Manager (Fr'ieda's)\ Cluster Node

— = ClassAd
Communication
Pathway

4 Desktop
;. Cstartd
\ Tschedd>

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 15

Access to Data in Condor

e Use Shared Filesystem if available

e No shared filesystem?
— Remote System Calls (in the Standard Universe)
— Condor File Transfer Service
« Can automatically send back changed files
» Atomic transfer of multiple files
— Remote I/O Proxy Socket

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

16

Standard Universe Remote System Calls

e |/O System calls trapped
— Sent back to submit machine

e Allows Transparent Migration Across Domains
— Checkpoint on machine A, restart on B

e No Source Code changes required
e Language Independent

e Opportunities
— For Application Steering
« Condor tells customer process “how” to open files
— For compression on the fly

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

17

Job Startup

4
]
L
&
L
L
L
L
L
L4
L
L4
L
L4
L
&
L
4

‘IIIIIIIIIIIIII

/’ =
—.w, Starter
-“"“ s _ -
) D Customer Job

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

18

Secure Remote 1/0
Local 1/Q

XChirp)
\
\

Local System Calls

19

a?

Job Submission Machine

Persistant
Job Queue

L b
Ué
End User
Requests

Condor-G
GridManager

e f e
Server

Condor-G
Scheduler

3104

Condor-G
Collector

Condor

Job Execution Site

Globus Daemons
+

Local Site Scheduler

[See Figure 1]

=
=

b

Job

Condor

Resource
formation

Daemons

Shadow
Process for
Job X

CMSC 714 —FO06 (lect OS)

Transfer Job X E
]
]
]
]
]
]
]
]

copyright 2003 Jeffrey K. Hollingsworth

Rddirected Job X
stem Call Condor System Call
:Data

Trapping & Checkpoint
Library

20

CMSC 412 - S96 (lect 25)

Exploiting Idle Cycles
In Networks of Workstations

Kyung Dong Ryu

@ UNIVERSITY OF
W MARYLAND

copyright 1996 Jeffrey K. Hollingsworth

21

High Performance Computing in NOW

e Many systems support harvesting idle machines
— Traditional Approach : Coarse-Grained Cycle Stealing
« while owner is away: send guest job and run
 when owner returns: stop, then
— migrate guest job: Condor, NOW system
— suspend or kill guest job: Butler, LSF, DQS system

e But...

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

22

Additional CPU Time and Memory Is Avallable

e \When a user Is active

— CPU usage is < 10%, 75% of time

— 30 MB memory is available, 70% of time

0.9

0.8

0.5

Cumulative Distr.

0.1

0

1 -

/g__,_ssf

0.7 -

0.6 -

0.4 -

0.3 -

0.2 1

al

—idle

— busy

0O 10 20 30 40 50 60 770 80 90 100

CPU Usage (%)

1
0.9

0.8

0.7
0.6
0.5

robability

a 04

0.3 -
0.2 +
0.1

0

Total: 64MB

—all

\ —idle

A\

A\

0O 5 10 15 20 25 30 35 40 45 50 55 60
memory size (MB)

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

23

Questions

e Can we exploit fine grained idle resources?
— For sequential programs and parallel programs
— Improve throughput

e How to reduce effect on user?
— Two level CPU scheduling
— Memory limits
— Network and I/O throttling

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

24

Fine-Grain Idle Cycles

Keyboard/Mouse Events
CPU '
Usage

Idle Non-idle dle | Non-idle

Recruitment
Threshold

t1 t2 t3 4

e Coarse-Grain Idle Cycles
— (11,t3): Keyboard/mouse events
— (t4,~): High CPU usage
— Recruitment threshold
e Fine-Grain Idle Cycles
— All empty slots
— Whenever resource(CPU) is not used

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

25

Linger Longer: Fine-Grain Cycle Stealing

e Goals:
— Harvest more available resources
— Limit impact on local jobs

e Technique: Lower Guest Job’s Resource Priority
— Exploit fine-grained idle intervals even when user is active
« Starvation-level low CPU priority
e Dynamically limited memory use
« Dynamically throttled I/O and network bandwidth
e Adaptive Migration

— No need to move guest job to avoid local job delay
— Could move guest job to improve guest performance

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 26

Adaptive Migration

e \When Migration Benefit overweighs Migration Cost
— Non-idle_Period > Linger_Time + Migration_Cost / Non-idle_Usage
— Linger_Time o Migration_Cost / Non-idle_Usage

» Migration_cost = Suspend_Time(source) +
Process_Size/Network Bandwidth + Resume_ Time(dest.)

wn |

LINGER TIME | Sy

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

27

Need a Suite of Mechanisms

Goal: maximize usage of idle resources
Constraint: limit impact on local jobs

e Policy:
— Most unused resources should be available
— Resource should be quickly revoked when local jobs reclaim
e Dynamic Bounding Mechanisms for:
1. CPU
2. Memory
3. /O Bandwidth
4. Network Bandwidth

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

28

CPU bounding: Is Unix “nice” sufficient ?

e CPU priority Is not strict
— run two empty loop processes (guest: nice 19)

OS Host Guest
[Solaris (SunOS5.5) | 84% | 15% |
Linux (2.0.32) 91% 8%
OSF1 99% 0%
AlX (4.2) 60% 40%
e Why ?

— Anti-Starvation Policy

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

CPU Bounding: Starvation Level Priority

e Original Linux CPU Scheduler
— One Level : process priority
— Run-time Scheduling Priority
* nice value & remaining time quanta
e T,=20 - nice_level + 1/2* T, ,
— Low priority process can preempt high priority process

e Extended Linux CPU Scheduler
— Two Level : 1) process class, 2) priority
— If runnable host processes exist
» Schedule a host process as in unmodified scheduler
— Only when no host process is runnable
» Schedule a guest process

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

30

Memory Bounding: Page Limits

e Extended page replacement algorithm

Priority to Host Job

<+— High Limit

Main Memory Pages

Based only on LRU

<«—— Low Limit
Priority to Guest Job

— No limit on taking free pages

— High Limit :
 Maximum pages guest can hold
— Low Limit :
* Minimum pages guaranteed to guest

e Adaptive Page-Out Speed

— When a host job steals a guest’s page,
page-out multiple pages

e faster than default

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 31

Experiment. Memory Bounding

e Prioritized Memory Page Replacement
— Total Available Memory : 180MB
— Guest Memory Thresholds: High Limit (7OMB), Low Limit (50MB)

160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

memor y(MB)

: ——nhost job
il memory
il ! ——guest job
il memory
i) High Limit

Ao | onenem— i Low Limit

0 20 40 60 80 100 120 140 160 180 200
time (sec)

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 32

Experiment: Nice vs. CPU & Memory Bounding

e Large Memory Footprint Job
— Each job takes 82 sec to run in isolation

Policy and Setup Host time | Guest time Host
(secs) (secs) Delay
Host starts then guest,
Guest niced 19 89 176 8.0%
Linger priority 83 165 0.8%
Guest starts then host
Guest niced 19 > 5 hours > 5 hours > 2,000%
Linger priority 99 255 8.1%

— Host-then-guest:

* Reduce host job delay 8% to 0.8%

— Guest-then-host:

* Nice causes memory thrashing
« CPU & memory bounding serializes the execution

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

/O and Network Throttling

Problem 1: Guest I/O & comm. can slow down local jobs
Problem 2: Migration/checkpoint bothers local users

e Policy: Limit guest I/O and comm. bandwidth

— Only when host I/O or communication is active
e Mechanism : Rate Windows

— Keep track of I/O rate by host and guest

— throttle guest I/O rate when host I/O is active
e Implementation: a loadable kernel module

— Highly portable and deployable
— Light-weight : I/O call intercept

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 34

/O Throttling Mechanism : Rate Windows

N items

12kB 16kB

o o | e | e
msec | msec msec msec

Application

Library

Kernel

CMSC 714 —FO06 (lect OS)

M seconds |
Avg. Rate d

delay <d, :
[s[gle](=
delay >d_.,

split req.
sleep d

otherwise:
sleep delay

max

Request split

Regulated
Process ?

copyright 2003 Jeffrey K. Hollingsworth

Compute Application
Yes ldelay, split

Library

Kernel

35

Experiment: I/O Throttling

e tar programs as host and guest jobs
— Guest I/O Limit : 500 kB/sec (~10%)
— Throttling Threshold : Lo: 500 kB/sec Hi: 1000 kB/s

8000 - 8000 -
7000 + 7000 A ——host
6000 - — host 6000 - guest
£ 5000 - guest o 5000
. =3
< 4000 - @ 4000 -
= ©
5 3000 - o 3000 -
2000 - W \ 2000 -
O E 1 w.w
O,JT,TJTJT‘A‘A‘ JT’T’T’T’W e
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
Ume (sec) t|me (SEC)

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 36

Dilation Factor in I/O Throttling

e File I/O rate = disk I/O rate
— Buffer Cache, Prefetching
e Control disk I/O by throttling file 110
— Adjust delay using
 dilation factor = avg. disk 1/O rate / avg. file 1/O rate
— Compile test (I1/0O Limit: 500kB/s)

2000 - 2000 - 2000 -
——File VO ——FHle VO ——File VO

— piskvo ||| — DisklO —_DisklO

1500 - 1500 - 1500 -
500 - I 500 /\

0 A\) O TTTTTTTTTTTT I T I T I I TIT T I T I I T I T T ITTITITITT T O T T T T T T T T ‘
0 10 20 30 40 50 0 1020 304050 60 70 80 0 10 20 30 40 50 60
Time (sec) Time (sec) Time (sec)

Rate (KB/s)
H
o
o
o
Rate (KB/s)
H
o
(@)
o
Rate (KB/s)
=
o
o
o

a
o
o

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 37

Experiment: Network Throttling

e Guest job migration vs. httpd as a host job
— Guest job migration disrupts host job communication
— Throttling migration when host job comm. is active
— Guest job comm. Limit: 500 kB/s

» - » uest migr

S 10000 guest migr S 10000) :)

x x —s—web server

= 8000 - /“'\\ —=—web server = 8000

5 5

= 6000 = 6000 -

= 4000 7 \ = 4000

[[

& / \ s AN

c 2000 e 2000 \ —

g 0 iw-r-w-w-wl-rblﬁhﬁhﬁhﬁl‘\--ﬂ-ﬂr-w-w-w-wh g 0 J-r-w-w-w-mﬂﬂw

o 0 6 12 18 24 30 36 42 48 O 0 6 12 18 24 30 36 42 48
Time (sec) Time (sec)

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 38

Guest Job Performance

6.0 ollL mLF oPM QOIE
5.0

8)

4.0 -
= 3.0 -

t (base

hp
|

= 2.0
1.0 -

Throu

0.0

mg.W.1m mg.W.30m sp.A.10m lu.B.1.5m

lu.B.30m

— Overall, LL improves 50%~70% over IE
— Less improvement for larger jobs (lu.B)
* Only 36% improvement for [u.B.30m
* Less memory is available while non-idle
— LF is slightly better than LL
— Less Variation for LL
e |u.B.30m: 23.6% for LL, 47.5% for LF

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

39

Host Job Slowdown

w
o

OoLL mLF OPM OIE

ol

mg.W.1m mg.W.30m sp.A.10m lu.B.1.5m [u.B.30m

w
o

host delay (%)

L i A
o o O a1
| |

o
[

o
o

— LL/LF delays less for small and medium size jobs
* 0.8%~1.1% for LL/LF, 1.4%~2.3% for PM/IE
* Non-prioritized migration operations of PM/IE
— More delay for large jobs
 Memory contention

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

40

Conclusions

e I|dentified opportunities for fine-grain idle resources
e Linger-Longer can exploit up to 60% more idle time
— Fine-Grain Cycle Stealing
— Adaptive Migration
e Linger-Longer can improve parallel applications in NOW
e A suite of mechanisms insulates local job’s performance
— CPU scheduling: starvation-level priority
— Memory Priority: lower and upper limits
— 1/O and Network Bandwidth Throttling: Rate Windows
e Linger-Longer really improves
— Guest job throughput by 50% to 70%
— With a 3% host job slowdown

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

41

Related Work

ldle Cycle Stealing Systems

— Condor [Litzkow88]

— NOW project [Anderson95]

— Butler [Dannenberg85], LSF [Green93], DQS [Zhou93]
Process Migration in OS

— Sprite [Douglis 91], Mosix [Barak 95]

ldle Memory Stealing Systems

— Dodo [Acharya 99], GMS [Freely 95]

— Cooperative Caching [Dahlin 94][Sarkar 96]

Parallel Programs on Non-dedicated Workstations

— Reconfiguration [Acharya 97]
— MIST/MPVM [Clark 95], Silk-NOW [Brumofe 97]
— CARMI [Pruyne 95] (Master-worker model)

Performance Isolation
— Eclipse [Bruno 98]
— Resource container [Banga 99]

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

42

