Computing Environment

e Cost Effective High Performance Computing
— Dedicated servers are expensive
— Non-dedicated machines are useful
 high processing power(~1GHz), fast network (100Mbps+)
* Long idle time(~50%), low resource usage
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OS Support For Parallel Computing

e Many applications need raw compute power
— Computer H/W and S/W Simulations
— Scientific/Engineering Computation
— Data Mining, Optimization problems

e Goal
— Exploit computation cycles on idle workstations

e Projects
— Condor
— Linger-Longer
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ISsues

e Scheduling
— What jobs to run on which machines?
— When to start / stop using idle machines?

e T[ransparency
— Can applications execute as if on home machine?

e Checkpoints
— Can work be saved if job is interrupted?
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What Is Condor?

e Condor

— EXxploits computation cycles in collections of
« workstations
 dedicated clusters

— Manages both
e resources (machines)
e resource requests (jobs)

— Has several mechanisms
» ClassAd Matchmaking
* Process checkpoint/ restart / migration
 Remote System Calls
e Grid Awareness

— Scalable to thousands of jobs / machines
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Condor — Dedicated Resources

e Dedicated Resources

— Compute Clusters

e Manage

— Node monitoring,

scheduling
— Job launch
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Condor — Non-dedicated Resources

e Examples
— Desktop workstations in offices
— Workstations in student labs

e Oftenidle
— Approx 70% of the time!

e Condor policy
— Use workstation if idle
— Interrupt and move job if user activity detected
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Mechanisms in Condor

e Transparent Process Checkpoint / Restart
e Transparent Process Migration

e Transparent Redirection of I/O
— Condor’'s Remote System Calls

CMSC 714 —FO06 (lect OS)
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CondorView Usage Graph
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What is ClassAd Matchmaking?

e Condor uses ClassAd Matchmaking to make sure
that work gets done within the constraints of both
users and owners.

e Users (jobs) have constraints:
— “I need an Alpha with 256 MB RAM”

e Owners (machines) have constraints:

— “Only run jobs when | am away from my desk and never run
jobs owned by Bob.”

e Semi-structured data --- no fixed schema
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Some Challenges

e Condor does whatever it takes to run your jobs, even
If some machines...
— Crash (or are disconnected)
— Run out of disk space
— Don’t have your software installed
— Are frequently needed by others
— Are far away & managed by someone else

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth
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Condor’'s Standard Universe

e Condor can support various combinations of
features/environments
— In different “Universes”

e Different Universes provide different functionality
— Vanilla
* Run any Serial Job
— Scheduler
e Plug in a meta-scheduler
— Standard
» Support for transparent process checkpoint and restart
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Process Checkpointing

e Condor’s Process Checkpointing mechanism saves
all the state of a process into a checkpoint file
— Memory, CPU, I/O, etc.

e The process can then be restarted
— From right where it left off
e Typically no changes to your job’s source code

needed

— However, your job must be relinked with Condor’s Standard
Universe support library
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When Will Condor Checkpoint Your Job?

e Periodically, If desired
— For fault tolerance

e To free the machine to do a higher priority task
(higher priority job, or a job from a user with higher
priority)

— Preemptive-resume scheduling

e \When you explicitly run

— condor_checkpoint
— condor_vacate

— condor_off

— condor_restart

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth
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Layout of the Condor Pool
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Access to Data in Condor

e Use Shared Filesystem if available

e No shared filesystem?
— Remote System Calls (in the Standard Universe)
— Condor File Transfer Service
« Can automatically send back changed files
» Atomic transfer of multiple files
— Remote I/O Proxy Socket

CMSC 714 —FO06 (lect OS)
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Standard Universe Remote System Calls

e |/O System calls trapped
— Sent back to submit machine

e Allows Transparent Migration Across Domains
— Checkpoint on machine A, restart on B

e No Source Code changes required
e Language Independent

e Opportunities
— For Application Steering
« Condor tells customer process “how” to open files
— For compression on the fly

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth
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Job Startup

4
]
L
&
L
L
L
L
L
L4
L
L4
L
L4
L
&
L
4

‘IIIIIIIIIIIIII

/’ =
—.w, Starter
-“"“ s \\_ -
) D Customer Job

CMSC 714 —FO06 (lect OS)

copyright 2003 Jeffrey K. Hollingsworth

18




Secure Remote 1/0
Local 1/Q

XChirp)
\
\

Local System Calls

19

a?




Job Submission Machine

Persistant
Job Queue

L b
Ué
End User
Requests

Condor-G
GridManager

e f e
Server

Condor-G
Scheduler

3104

Condor-G
Collector

Condor

Job Execution Site

Globus Daemons
+

Local Site Scheduler

[See Figure 1]

=
=

b

Job

Condor

Resource
formation

Daemons

Shadow
Process for
Job X

CMSC 714 —FO06 (lect OS)

Transfer Job X E
]
]
]
]
]
]
]
]

copyright 2003 Jeffrey K. Hollingsworth

Rddirected Job X
stem Call Condor System Call
:Data

Trapping & Checkpoint
Library

20




CMSC 412 - S96 (lect 25)

Exploiting Idle Cycles
In Networks of Workstations
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High Performance Computing in NOW

e Many systems support harvesting idle machines
— Traditional Approach : Coarse-Grained Cycle Stealing
« while owner is away: send guest job and run
 when owner returns: stop, then
— migrate guest job: Condor, NOW system
— suspend or kill guest job: Butler, LSF, DQS system

e But...

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth

22




Additional CPU Time and Memory Is Avallable

e \When a user Is active

— CPU usage is < 10%, 75% of time

— 30 MB memory is available, 70% of time
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Questions

e Can we exploit fine grained idle resources?
— For sequential programs and parallel programs
— Improve throughput

e How to reduce effect on user?
— Two level CPU scheduling
— Memory limits
— Network and I/O throttling

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth
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Fine-Grain Idle Cycles

Keyboard/Mouse Events
CPU '
Usage

Idle Non-idle dle | Non-idle

Recruitment
Threshold

t1 t2 t3 4

e Coarse-Grain Idle Cycles
— (11,t3): Keyboard/mouse events
— (t4,~): High CPU usage
— Recruitment threshold
e Fine-Grain Idle Cycles
— All empty slots
— Whenever resource(CPU) is not used
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Linger Longer: Fine-Grain Cycle Stealing

e Goals:
— Harvest more available resources
— Limit impact on local jobs

e Technique: Lower Guest Job’s Resource Priority
— Exploit fine-grained idle intervals even when user is active
« Starvation-level low CPU priority
e Dynamically limited memory use
« Dynamically throttled I/O and network bandwidth
e Adaptive Migration

— No need to move guest job to avoid local job delay
— Could move guest job to improve guest performance
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Adaptive Migration

e \When Migration Benefit overweighs Migration Cost
— Non-idle_Period > Linger_Time + Migration_Cost / Non-idle_Usage
— Linger_Time o Migration_Cost / Non-idle_Usage

» Migration_cost = Suspend_Time(source) +
Process_Size/Network Bandwidth + Resume_ Time(dest.)

wn |

LINGER TIME | Sy
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Need a Suite of Mechanisms

Goal: maximize usage of idle resources
Constraint: limit impact on local jobs

e Policy:
— Most unused resources should be available
— Resource should be quickly revoked when local jobs reclaim
e Dynamic Bounding Mechanisms for:
1. CPU
2. Memory
3. /O Bandwidth
4. Network Bandwidth

CMSC 714 —FO06 (lect OS)
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CPU bounding: Is Unix “nice” sufficient ?

e CPU priority Is not strict
— run two empty loop processes (guest: nice 19)

OS Host Guest
[ Solaris (SunOS5.5) | 84% | 15% |
Linux (2.0.32) 91% 8%
OSF1 99% 0%
AlX (4.2) 60% 40%
e Why ?

— Anti-Starvation Policy
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CPU Bounding: Starvation Level Priority

e Original Linux CPU Scheduler
— One Level : process priority
— Run-time Scheduling Priority
* nice value & remaining time quanta
e T,=20 - nice_level + 1/2* T, ,
— Low priority process can preempt high priority process

e Extended Linux CPU Scheduler
— Two Level : 1) process class, 2) priority
— If runnable host processes exist
» Schedule a host process as in unmodified scheduler
— Only when no host process is runnable
» Schedule a guest process

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth
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Memory Bounding: Page Limits

e Extended page replacement algorithm

Priority to Host Job

<+— High Limit

Main Memory Pages

Based only on LRU

<«—— Low Limit
Priority to Guest Job

— No limit on taking free pages

— High Limit :
 Maximum pages guest can hold
— Low Limit :
* Minimum pages guaranteed to guest

e Adaptive Page-Out Speed

— When a host job steals a guest’s page,
page-out multiple pages

e faster than default
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Experiment. Memory Bounding

e Prioritized Memory Page Replacement
— Total Available Memory : 180MB
— Guest Memory Thresholds: High Limit (7OMB), Low Limit (50MB)
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Experiment: Nice vs. CPU & Memory Bounding

e Large Memory Footprint Job
— Each job takes 82 sec to run in isolation

Policy and Setup Host time | Guest time Host
(secs) (secs) Delay
Host starts then guest,
Guest niced 19 89 176 8.0%
Linger priority 83 165 0.8%
Guest starts then host
Guest niced 19 > 5 hours > 5 hours > 2,000%
Linger priority 99 255 8.1%

— Host-then-guest:

* Reduce host job delay 8% to 0.8%

— Guest-then-host:

* Nice causes memory thrashing
« CPU & memory bounding serializes the execution

CMSC 714 —FO06 (lect OS)
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/O and Network Throttling

Problem 1: Guest I/O & comm. can slow down local jobs
Problem 2: Migration/checkpoint bothers local users

e Policy: Limit guest I/O and comm. bandwidth

— Only when host I/O or communication is active
e Mechanism : Rate Windows

— Keep track of I/O rate by host and guest

— throttle guest I/O rate when host I/O is active
e Implementation: a loadable kernel module

— Highly portable and deployable
— Light-weight : I/O call intercept
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/O Throttling Mechanism : Rate Windows

N items

12kB 16kB

o o | e | e
msec | msec msec msec
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Experiment: I/O Throttling

e tar programs as host and guest jobs
— Guest I/O Limit : 500 kB/sec (~10%)
— Throttling Threshold : Lo: 500 kB/sec Hi: 1000 kB/s
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Dilation Factor in I/O Throttling

e File I/O rate = disk I/O rate
— Buffer Cache, Prefetching
e Control disk I/O by throttling file 110
— Adjust delay using
 dilation factor = avg. disk 1/O rate / avg. file 1/O rate
— Compile test (I1/0O Limit: 500kB/s)
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Experiment: Network Throttling

e Guest job migration vs. httpd as a host job
— Guest job migration disrupts host job communication
— Throttling migration when host job comm. is active
— Guest job comm. Limit: 500 kB/s

» - » uest migr

S 10000 guest migr S 10000 ) : )

x x —s—web server

= 8000 - /“'\\ —=—web server = 8000

5 5

= 6000 = 6000 -

= 4000 7 \ = 4000

[ [

& / \ s AN

c 2000 e 2000 \ —

g 0 iw-r-w-w-wl-rblﬁhﬁhﬁhﬁl‘\--ﬂ-ﬂr-w-w-w-wh g 0 J-r-w-w-w-mﬂﬂw

o 0 6 12 18 24 30 36 42 48 O 0 6 12 18 24 30 36 42 48
Time (sec) Time (sec)

CMSC 714 —F06 (lect OS) copyright 2003 Jeffrey K. Hollingsworth 38




Guest Job Performance
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— Overall, LL improves 50%~70% over IE
— Less improvement for larger jobs (lu.B)
* Only 36% improvement for [u.B.30m
* Less memory is available while non-idle
— LF is slightly better than LL
— Less Variation for LL
e |u.B.30m: 23.6% for LL, 47.5% for LF
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Host Job Slowdown
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— LL/LF delays less for small and medium size jobs
* 0.8%~1.1% for LL/LF, 1.4%~2.3% for PM/IE
* Non-prioritized migration operations of PM/IE
— More delay for large jobs
 Memory contention
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Conclusions

e I|dentified opportunities for fine-grain idle resources
e Linger-Longer can exploit up to 60% more idle time
— Fine-Grain Cycle Stealing
— Adaptive Migration
e Linger-Longer can improve parallel applications in NOW
e A suite of mechanisms insulates local job’s performance
— CPU scheduling: starvation-level priority
— Memory Priority: lower and upper limits
— 1/O and Network Bandwidth Throttling: Rate Windows
e Linger-Longer really improves
— Guest job throughput by 50% to 70%
— With a 3% host job slowdown
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