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Introduction

Reading 
– Papers

Reminder: Project due Oct 8th
– Submit via email to hollings (mime attached tar file)
– Sample data output now on web page
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Cache Coherency (write through)

Read only data cached
Writeable values can be cached by one processor
– a processor needs to gain write access

• must force invalidation of other cached copies
– all writes go back to main memory
– reads can be served from cache for processor with write 

access
Performance
– good for

• updates and reads by same processor
– bad for

• multiple updates by the same processor (many bus 
writes)
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How to Manage Caches

Snooping
– each cache controller watches bus for “interesting” info
– may result in cache lines being invalidated if write seen

• i.e. a write through cache
– limited by speed of cache controllers to watch the bus

• must see everything to maintain correctness
Directories
– memory stores information about cached copies
– does not require each cache controller to snoop
– permits more scaleable interconnect networks
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Directory Based Cache Controllers

Requires additional circuits to maintain directories
directories must be updated when a processors
– starts caching a value
– stops caching a value
– changes from read to write caching (or back)

each cache line has a directory entry
– can use sparse schemes that only have entries for actively 

cached items
can have several memory controllers in a machine
– each manages a region of physical memory
– bit vectors (one bit per processor)
– addresses (several log2n entries)
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Representing Directories

bit vectors
– one bit per processor
– uses lots of space for a large machine
– permits each processor to cache a value

addresses
– several entries for PE id (each entry is log2 n bits)
– what happens if a processor wishes to cache, and all entries 

are full?
• use a linked list of directories (SCI uses this approach)
• use a “wildcard” and force a broadcast to invalidate
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Stanford Dash

Structure
– collection of bus based multi-processors
– interconnect network and cache controller connect nodes

Cache System
– snoopy protocol within in a single SMP node
– directory based cache controller between nodes

• misses on local cluster go to home cluster of memory 
“owner”

• owner may have current copy or could be cached on 
another cluster

Processors
– 4 MIPS R3000 (33 Mhz) per node

Interconnect
– 2 dimensional mesh



7CMSC 714 –F03 (lect 07) copyright 2003  Jeffrey K. Hollingsworth

Stanford Dash (cont.)

Performance
– level 0 cache (1 clock)
– remote clutser load (132 clocks)

New Directions
– FLASH
– use a full micro-processor for the cache controller

• permits customization of cache protocols
• makes the hardware simpler
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SGI Origin Servers

Commercialization of Stanford DASH
– SMP nodes
– directory based cache controller

Changes
– processors are R10000
– only 2 nodes per bus

• slightly cheaper bus than DASH
• faster processors require more bus bandwidth

– interconnection network
• hypercube (to 32 nodes)
• re-configurale routers beyond

– Directory only based (I.e. no snoopy within the nodes)
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SGI Origin Structure

image copyright SGI, 1996.


