
1CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Introduction

Reading
– Papers

Reminder: Project due Oct 8th
– Submit via email to hollings (mime attached tar file)
– Sample data output now on web page

2CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Cache Coherency (write through)

Read only data cached
Writeable values can be cached by one processor
– a processor needs to gain write access

• must force invalidation of other cached copies
– all writes go back to main memory
– reads can be served from cache for processor with write

access
Performance
– good for

• updates and reads by same processor
– bad for

• multiple updates by the same processor (many bus
writes)

3CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

How to Manage Caches

Snooping
– each cache controller watches bus for “interesting” info
– may result in cache lines being invalidated if write seen

• i.e. a write through cache
– limited by speed of cache controllers to watch the bus

• must see everything to maintain correctness
Directories
– memory stores information about cached copies
– does not require each cache controller to snoop
– permits more scaleable interconnect networks

4CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Directory Based Cache Controllers

Requires additional circuits to maintain directories
directories must be updated when a processors
– starts caching a value
– stops caching a value
– changes from read to write caching (or back)

each cache line has a directory entry
– can use sparse schemes that only have entries for actively

cached items
can have several memory controllers in a machine
– each manages a region of physical memory
– bit vectors (one bit per processor)
– addresses (several log2n entries)

5CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Representing Directories

bit vectors
– one bit per processor
– uses lots of space for a large machine
– permits each processor to cache a value

addresses
– several entries for PE id (each entry is log2 n bits)
– what happens if a processor wishes to cache, and all entries

are full?
• use a linked list of directories (SCI uses this approach)
• use a “wildcard” and force a broadcast to invalidate

6CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Stanford Dash

Structure
– collection of bus based multi-processors
– interconnect network and cache controller connect nodes

Cache System
– snoopy protocol within in a single SMP node
– directory based cache controller between nodes

• misses on local cluster go to home cluster of memory
“owner”

• owner may have current copy or could be cached on
another cluster

Processors
– 4 MIPS R3000 (33 Mhz) per node

Interconnect
– 2 dimensional mesh

7CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

Stanford Dash (cont.)

Performance
– level 0 cache (1 clock)
– remote clutser load (132 clocks)

New Directions
– FLASH
– use a full micro-processor for the cache controller

• permits customization of cache protocols
• makes the hardware simpler

8CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

SGI Origin Servers

Commercialization of Stanford DASH
– SMP nodes
– directory based cache controller

Changes
– processors are R10000
– only 2 nodes per bus

• slightly cheaper bus than DASH
• faster processors require more bus bandwidth

– interconnection network
• hypercube (to 32 nodes)
• re-configurale routers beyond

– Directory only based (I.e. no snoopy within the nodes)

9CMSC 714 –F03 (lect 07) copyright 2003 Jeffrey K. Hollingsworth

SGI Origin Structure

image copyright SGI, 1996.

