
1CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Announcements

Programming Assignment #1 is available on web
– 5% extra credit for turning in journal of time for study

2CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

MPI Calls

Include <mpi.h> in your program
If using mpich, …

First call MPI_Init(&argc, &argv)
MPI_Comm_rank(MPI_COMM_WORLD, &myrank)
– Myrank is set to id of this process

MPI_Wtime
– Returns wall time

At the end, call MPI_Finalize()

3CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

MPI Communication

Parameters
– var – a variable
– num – number of elements in the variable to use
– type {MPI_INT, MPI_REAL, MPI_BYTE}
– root – rank of processor at root of collective operation
– dest – rank of destination processor
– status - variable of type MPI_Status;

Calls (all return a code – check for MPI_Success)
– MPI_Send(var, num, type, dest, tag, MPI_COMM_WORLD)
– MPI_Recv(var, num, type, dest, MPI_ANY_TAG,

MPI_COMM_WORLD, &status)

– MPI_Bcast(var, num, type, root, MPI_COMM_WORLD)
– MPI_Barrier(MPI_COMM_WORLD)

4CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Programming Assignment Notes

Assume that memory is limited
– don’t replicate the board on all nodes

Need to provide load balancing
– goal is to speedup computation
– must trade off

• communication costs of load balancing
• computation costs of making choices
• benefit of having similar amounts of work for each

processor
Consider “back of the envelop” calculations
– how fast can mpi move data?
– what is the update time for local cells?
– how big does the board need to be to see speedups?

5CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

OpenMP

Support Parallelism for SMPs
– provide a simple portable model
– allows both shared and private data
– provides parallel do loops

Includes
– automatic support for fork/join parallelism
– reduction variables
– atomic statement

• one processes executes at a time
– single statement

• only one process runs this code (first thread to reach it)

6CMSC 818Z – S00 (lect 3) copyright 1999 Jeffrey K. Hollingsworth

Sample Code
program compute_pi

integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, \021Enter number of intervals: \021
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)

do i = 1, n
x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, \021computed pi = \021, pi
stop
end

