Seismic Code

e Given echo data, compute under sea map

e Computation model
— designed for a collection of workstations
— uses variation of RPC model
— workers are given an independent trace to compute
e requires little communication
e supports load balancing (1,000 traces is typical)

e Performance
— max mfops = O((F * nz * B")?)
— F - single processor MFLOPS
— nz - linear dimension of input array
— B - effective communication bandwidth
« B"=B/(1 + BL/w) = B/7 for Ethernet (10msec lat., w=1400)
— real limit to performance was latency not bandwidth

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Database Applications

e Too much data to fit iIn memory (or sometimes disk)
— data mining applications (K-Mart has a 4-5TB database)
— imaging applications (NASA has a site with 0.25 petabytes)
» use a fork lift to load tapes by the pallet

e Sources of parallelism
— within a large transaction
— among multiple transactions
e Join operation
— form a single table from two tables based on a common field
— try to split join attribute in disjoint buckets

 If know data distribution is uniform its easy
* if not, try hashing

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Speedup In Join parallelism

e Books claims a speed up ofl/p? is possible
— split each relation into p buckets
« each bucket is a disjoint subset of the joint attribute
— each processor only has to consider N/p tuples per relation
e join is O(n?) so each processor does O((N/p)?) work
* 50 spedup is O(N?/p?)/O(N?) = O(1/p?)
e thisis alie!
« could split into 1/p buckets on one processor
 time would then be O(p * (N/p)?) = O(N?/p)
e 50 speedup is O(N?/p?)/O(N?3/p) = O(1/p)
— Amdabhls law is not violated

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Parallel Search (TSP)

e Mmay appear to be faster than 1/n
— but this is not really the case either

e Algorithm
— compute a path on a processor

« if our path is shorter than the shortest one, send it to the
others.

» stop searching a path when it is longer than the shortest.

— before computing next path, check for word of a new min
path

— stop when all paths have been explored.

e Why it appears to be faster than 1/n speedup
— we found the a path that was shorter sooner
— however, the reason for this is a different search order!

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Ensuring a fair speedup

o T, = fasterof
— best known serial algorithm
— simulation of parallel computation
» use parallel algorithm
* run all processes on one processor
— parallel algorithm run on one processor
e If it appears to be super-linear
— check for memory hierarchy
 increased cache or real memory may be reason
— verify order operations is the same in parallel and serial cases

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Quantitative Speedup

e Consider master-worker
— one master and n worker processes
— communication time increases as a linear function of n
T,=TCOMP, + TCOMM,
TCOMP,=T(/P
1/S,= T,/Ts = 1/P + TCOMM,/T,
TCOMM, is P * TCOMM;,
1/S,=1/p + p * TCOMM, /T, = 1/P + PIr,
where r, = TJTCOMM,
d(1/S,)/dP =0 --> P, =r,Y?and S,,= 0.5 r, 2
e For hierarchy of masters
— TCOMM, = (1+logP)TCOMM,
— Po=rpand S, =r,/(1 +log ry)

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM

e Provide a simple, free, portable parallel environment

e Run on everything
— Parallel Hardware: SMP, MPPs, Vector Machines
— Network of Workstations: ATM, Ethernet,
* UNIX machines and PCs running Win*
— Works on a heterogenous collection of machines
» handles type conversion as needed

e Provides two things
— message passing library
e point-to-point messages
» synchronization: barriers, reductions
— OS support
e process creation (pvm_spawn)

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Environment (UNIX)

IBM RS/6000 DECmmp 12000

e One PVMD per machine
— all processes communicate through pvmd (by default)

e Any number of application processes per node

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Message Passing

e All messages have tags
— an integer to identify the message
— defined by the user

e Messages are constructed, then sent
— pvm_pk{int,char,float}(*var, count, stride)
— pvm_unpk{int,char,float} to unpack
e All proccess are named based on task ids (tids)
— local/remote processes are the same
e Primary message passing functions
— pvm_send(tid, tag)
— pvm_recv(tid, tag)

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Process Control

e Creating a process
— pvm_spawn(task, argv, flag, where, ntask, tids)
— flag and where provide control of where tasks are started
— ntask controls how many copies are started
— program must be installed on target machine
e Ending a task
— pvm_exit
— does not exit the process, just the PVM machine
e Info functions
— pvm_mytid() - get the process task id

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

10

PVM Group Operations

e Group Is the unit of communication
— a collection of one or more processes
— processes join group with pvm_joingroup(“<group name>")
— each process in the group has a unique id
e pvm_gettid(“<group name>*)
e Barrier
— can involve a subset of the processes in the group
— pvm_barrier(“<group name>*, count)

e Reduction Operations

— pvm_reduce(void (*func)(), void *data, int count, int
datatype, int msgtag, char *group, int rootinst)

» result Is returned to rootinst node
* does not block
— pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

11

PVM Performance Issues

e Messages have to go through PVMD
— can use direct route option to prevent this problem

e Packing messages
— semantics imply a copy
— extra function call to pack messages

e Heterogenous Support
— information is sent in machine independent format

— has a short circuit option for known homogenous comm.

e passes data in native format then

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

12

Sample PVM Program

int main(int argc, char **argv) {
int myGroupNum;
int friendTid;
int mytid,;
int tids[2];
int message[MESSAGESIZE];
int c,i,okSpawn;

/* Initialize process and spawn if necessary */

myGroupNum=pvm_joingroup("ping-pong");

mytid=pvm_mytid();

if (myGroupNum==0) {/* | am the first process */
pvm_catchout(stdout);

/* Main Loop Body */
if (myGroupNum==0) {
[* Initialize the message */
for (i=0 ; IKMESSAGESIZE ; i++) {
message(i]="1";

/* Now start passing the message back and forth */

for (i=0 ; iKITERATIONS ; i++) {
pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);

okSpawn=pvm_spawn(MYNAME,argv,0,",1,&friendTid); pvm_send(tid, msgid);

if (okSpawn!=1) {
printf("Can't spawn a copy of myself\n");
pvm_exit();
exit(1);

}

tids[0]=mytid;

tids[1]=friendTid;

} else { /*I am the second process */
friendTid=pvm_parent();
tids[O]=friendTid;
tids[1]=mytid;

}

pvm_barrier("ping-pong",2);

}

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);

}

} else {
pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);
pvm_initsend(PvmDataDefault);
pvm_pkint(message, MESSAGESIZE,1);
pvm_send(tid,msgid);

}

pvm_exit();

exit(0);

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

13

MPI

e Goals:
— Standardize previous message passing:
 PVM, P4, NX
— Support copy free message passing
— Portable to many platforms
e Features:
— point-to-point messaging
— group communications
— profiling interface: every function has a name shifted version
e Buffering
— no guarantee that there are buffers
— possible that send will block until receive is called
e Delivery Order
— two sends from same process to same dest. will arrive in order
— no guarantee of fairness between processes on recv.

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

14

MPI Communicators

e Provide a named set of processes for communication

e All processes within a communicator can be named
— numbered from 0...n-1

e Allows libraries to be constructed
— application creates communicators
— library uses it
— prevents problems with posting wildcard receives
» adds a communicator scope to each receive

e All programs start will MPI_COMM_WORLD

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Non-Blocking Functions

e Two Parts
— post the operation
— wait for results

e Also includes a poll option
— checks if the operation has finished

e Semantics
— must not alter buffer while operation is pending

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

16

MPI1 Misc.

e MPI Types
— All messages are typed
* base types are pre-defined:
— int, double, real, {,unsigned}{short, char, long}
e can construct user defined types
— Includes non-contiguous data types

e Processor Topologies
— Allows construction of Cartesian & arbitrary graphs
— May allow some systems to run faster

e What's not in MPI-1
— process creation

— 1/O
— one sided communication

CMSC 714 — FO3 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

17

