
1CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Seismic Code
Given echo data, compute under sea map
Computation model
– designed for a collection of workstations
– uses variation of RPC model
– workers are given an independent trace to compute

• requires little communication
• supports load balancing (1,000 traces is typical)

Performance
– max mfops = O((F * nz * B*)1/2)
– F - single processor MFLOPS
– nz - linear dimension of input array
– B* - effective communication bandwidth

• B* = B/(1 + BL/w) ≈ B/7 for Ethernet (10msec lat., w=1400)
– real limit to performance was latency not bandwidth

2CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Database Applications

Too much data to fit in memory (or sometimes disk)
– data mining applications (K-Mart has a 4-5TB database)
– imaging applications (NASA has a site with 0.25 petabytes)

• use a fork lift to load tapes by the pallet
Sources of parallelism
– within a large transaction
– among multiple transactions

Join operation
– form a single table from two tables based on a common field
– try to split join attribute in disjoint buckets

• if know data distribution is uniform its easy
• if not, try hashing

3CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Speedup in Join parallelism

Books claims a speed up of1/p2 is possible
– split each relation into p buckets

• each bucket is a disjoint subset of the joint attribute
– each processor only has to consider N/p tuples per relation

• join is O(n2) so each processor does O((N/p)2) work
• so spedup is O(N2/p2)/O(N2) = O(1/p2)

this is a lie!
• could split into 1/p buckets on one processor
• time would then be O(p * (N/p)2) = O(N2/p)
• so speedup is O(N2/p2)/O(N2/p) = O(1/p)

– Amdahls law is not violated

4CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Parallel Search (TSP)
may appear to be faster than 1/n
– but this is not really the case either

Algorithm
– compute a path on a processor

• if our path is shorter than the shortest one, send it to the
others.

• stop searching a path when it is longer than the shortest.
– before computing next path, check for word of a new min

path
– stop when all paths have been explored.

Why it appears to be faster than 1/n speedup
– we found the a path that was shorter sooner
– however, the reason for this is a different search order!

5CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Ensuring a fair speedup

Tserial = faster of
– best known serial algorithm
– simulation of parallel computation

• use parallel algorithm
• run all processes on one processor

– parallel algorithm run on one processor
If it appears to be super-linear
– check for memory hierarchy

• increased cache or real memory may be reason
– verify order operations is the same in parallel and serial cases

6CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Quantitative Speedup

Consider master-worker
– one master and n worker processes
– communication time increases as a linear function of n
Tp = TCOMPp + TCOMMp

TCOMPp = Ts/P
1/Sp= Tp/Ts = 1/P + TCOMMp/Ts

TCOMMp is P * TCOMM1

1/Sp=1/p + p * TCOMM1/Ts = 1/P + P/r1

where r1 = Ts/TCOMM1

d(1/Sp)/dP = 0 --> Popt = r1
1/2 and Sopt= 0.5 r1

1/2

For hierarchy of masters
– TCOMMp = (1+logP)TCOMM1

– Popt= r1 and Sopt = r1/(1 + log r1)

7CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM

Provide a simple, free, portable parallel environment
Run on everything
– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win*
– Works on a heterogenous collection of machines

• handles type conversion as needed
Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)

8CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Environment (UNIX)

Application
Process

Bus Network

PVMDPVMD

PVMDPVMD
PVMD

Application
Process

Application
Process

Application
ProcessApplication

Process

Sun SPARC Sun SPARC

IBM RS/6000 Cray Y-MPDECmmp 12000

One PVMD per machine
– all processes communicate through pvmd (by default)

Any number of application processes per node

9CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Message Passing

All messages have tags
– an integer to identify the message
– defined by the user

Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

All proccess are named based on task ids (tids)
– local/remote processes are the same

Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)

10CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Process Control

Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

Info functions
– pvm_mytid() - get the process task id

11CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Group Operations
Group is the unit of communication
– a collection of one or more processes
– processes join group with pvm_joingroup(“<group name>“)
– each process in the group has a unique id

• pvm_gettid(“<group name>“)
Barrier
– can involve a subset of the processes in the group
– pvm_barrier(“<group name>“, count)

Reduction Operations
– pvm_reduce(void (*func)(), void *data, int count, int

datatype, int msgtag, char *group, int rootinst)
• result is returned to rootinst node
• does not block

– pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct

12CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

PVM Performance Issues

Messages have to go through PVMD
– can use direct route option to prevent this problem

Packing messages
– semantics imply a copy
– extra function call to pack messages

Heterogenous Support
– information is sent in machine independent format
– has a short circuit option for known homogenous comm.

• passes data in native format then

13CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Sample PVM Program
int main(int argc, char **argv) {

int myGroupNum;
int friendTid;
int mytid;
int tids[2];
int message[MESSAGESIZE];
int c,i,okSpawn;

/* Initialize process and spawn if necessary */
myGroupNum=pvm_joingroup("ping-pong");
mytid=pvm_mytid();
if (myGroupNum==0) { /* I am the first process */

pvm_catchout(stdout);
okSpawn=pvm_spawn(MYNAME,argv,0,"",1,&friendTid);
if (okSpawn!=1) {

printf("Can't spawn a copy of myself!\n");
pvm_exit();
exit(1);

}
tids[0]=mytid;
tids[1]=friendTid;

} else { /*I am the second process */
friendTid=pvm_parent();
tids[0]=friendTid;
tids[1]=mytid;

}
pvm_barrier("ping-pong",2);

/* Main Loop Body */
if (myGroupNum==0) {

/* Initialize the message */
for (i=0 ; i<MESSAGESIZE ; i++) {

message[i]='1';
}

/* Now start passing the message back and forth */
for (i=0 ; i<ITERATIONS ; i++) {

pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);

}
} else {

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);
pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

}
pvm_exit();
exit(0);

}

14CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

MPI
Goals:
– Standardize previous message passing:

• PVM, P4, NX
– Support copy free message passing
– Portable to many platforms

Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a name shifted version

Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

15CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

MPI Communicators

Provide a named set of processes for communication
All processes within a communicator can be named
– numbered from 0…n-1

Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive
All programs start will MPI_COMM_WORLD

16CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

Non-Blocking Functions

Two Parts
– post the operation
– wait for results

Also includes a poll option
– checks if the operation has finished

Semantics
– must not alter buffer while operation is pending

17CMSC 714 – F03 (lect 3) copyright 2003 Jeffrey K. Hollingsworth

MPI Misc.

MPI Types
– All messages are typed

• base types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

What’s not in MPI-1
– process creation
– I/O
– one sided communication

