
1CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Introduction

Reading
– Today UPC & OpenMP
– Thursday HPF paper

2CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Software DSM

Software abstraction to create illusion of shared memory
– Use message passing to move data around
– Let’s programmers think they have shared memory

Simple idea, problem is making it work fast
– Too much data movement
– Too much synchronization

Definitions
– Coherence

• Ensure modifications propagate to all copies
• Preserve program order
• Serialize write

– Consistency
• Defines when and what order updates are seen
• Defines behavior of reads and writes with respect to other

memory locations

3CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Sequential Consistency

A system is sequentially consistent if the result of any
execution is the same as if the operations of all of the
processors were executed in some sequential order,
and the operations of each individual processor
appear in this sequence in the order specified by its
program – Lamport’79
In practice
– Every write must be seen on all processors before any

succeeding read or write can be issued

A= 0;
A= 1;
If (B== 0)

….

B= 0;
B= 1;
If (A== 0)

….

4CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Sequential Consistency Problems

False Sharing
– Two un-related items get moved because they are being

updated at the same time

Slow Performance
– Too much communication
– To much latency

5CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Release Consistency

Observation: Program need synchronization to get
right results

Distinguish ordinary accesses and synchronization
– Read the last value written by a processors you

synchronized with

If synchronization is correct, RC behaves like SC

Lazy Release Consistency
– Rather than push updates, pull them on next access

6CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Page-based DSM

Use hardware pages as unit of sharing
– Hardware page fault handlers can provide support

Issues
– How to keep illusion of shared memory
– How to manage communication volume

Use Release (or Lazy Release Consistency)
– Reduces the overhead

7CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Multiple Writers

Allow multiple processes to write a single page
Synchronization should ensure correctness
Need to track what has changed
– Diff page between acquire and release of locks

• Store copy on first update
– Send diffs between nodes

• Merge diffs
– Must be disjoint or synchronization is wrong

– Aquire lock pulls modifications in

8CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Programming Assignment Notes

Assume that memory is limited
– don’t replicate the board on all nodes

Need to provide load balancing
– goal is to speed computation
– must trade off

• communication costs of load balancing
• computation costs of making choices
• benefit of having similar amounts of work for each

processor
Consider “back of the envelop” calculations
– how fast can pvm move data?
– what is the update time for local cells?
– how big does the board need to be to see speedups?

9CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

OpenMP

Support Parallelism for SMPs
– provide a simple portable model
– allows both shared and private data
– provides parallel do loops

Includes
– automatic support for fork/join parallelism
– reduction variables
– atomic statement

• one processes executes at a time
– single statement

• only one process runs this code (first thread to reach it)

10CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Sample Code
program compute_pi

integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, \021Enter number of intervals: \021
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)

do i = 1, n
x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, \021computed pi = \021, pi
stop
end

11CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

UPC

Extension to C for parallel computing
Target Environment
– Distributed memory machines
– Cache Coherent multi-processors

Features
– Explicit control of data distribution
– Includes parallel for statement

12CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

UPC Execution Model

SPMD-based
– One thread per processor
– Each thread starts with same entry to main

Different consistency models possible
– “strict” model is based on sequential consistency
– “relaxed” based on release consistency

13CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Forall Loop

Forms basis of parallelism
Add forth parameter to for loop “affinity”
– Where code is executed is based on “affinity”

Lacks explict barrier before/after execution
– Differs from openMP

Supports nested forall loops

14CMSC 714 – F02 (lect5) copyright 2002 Jeffrey K. Hollingsworth

Split-phase Barriers

Traditional Barriers
– Once enter barriers, busy-wait until everyone arrives

Split-phase
– Announce intention to enter barrier (upc_notify)
– Perform some local operations
– Wait for everyone else (upc_wait)

Advantage
– Allows work while waiting for processes to arrive

Disadvantage
– Must find work to do
– Takes time to communicate both notify and wait

