
Announcements

- Reading
 - Today: 7.2, 7.3 (skip 7.3.2 and 7.3.4)
 - Tuesday: 7.4, 7.5
- Will have office hours on Thursday 10:45 to 11:45
- Problems for Chapter 4:

- 4, 10, 17, 18, 21, 37, 40

Authentication using Public Keys

• Assume each party knows the other's public key

• How To learn others Public Key?

- use a public key server
 - but how do we trust the public key server?
 - have a public key for the public key server
 - possible to have man-in-the-middle attacks
- interlock protocol
 - only send half the message (odd bits) at a time
 - prevents man-in-the-middle attacks
 - still possible to spoof service

Digital Signatures

- Want to "sign" a message such that:
 - receiver can verify the identity of the sender
 - sender cannot repudiate the contents of the message
 - receiver cannot forge a message
- Central authority (BB)
 - A sends BB A, $K_a(B, R_a, t, P)$
 - BB sends B $K_b(A, R_a, t, P, K_{bb}(A, t, P))$
 - everyone trusts BB
 - BB can be called on to decrypt messages to verify them
 - BB need not store all message that it validates
 - t timestamp used to prevent replay attacks

• Public Key

- need E(D(P)) = P and D(E(P)) = P
- A sends B $E_b(D_a(P))$
 - B keeps $D_a(P)$ and thirdy party can use E_a to verify it's from A

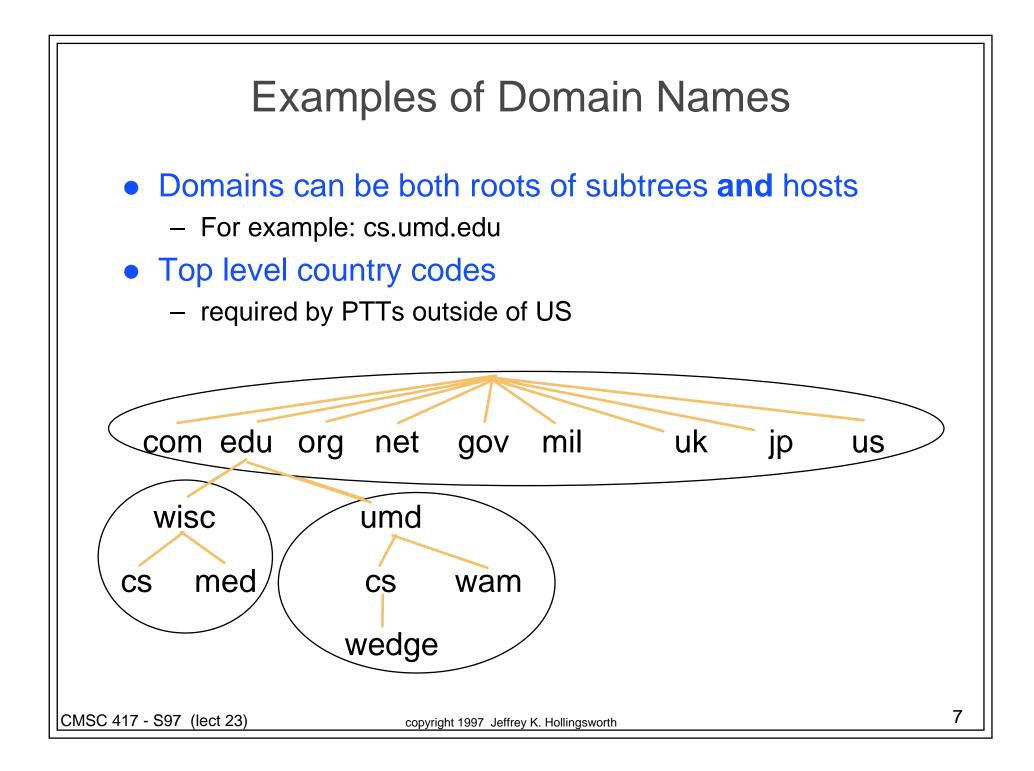
Digital Signatures (cont.)

• Problems

- Repudiation
 - inform police that the key was stolen
 - claim the "bad guy" sent the message
- Key Changes
 - need to keep records of when keys were in use

• Standards

- RSA Algorithm
 - popular with many commercial systems
- El Gamal
 - NSA/NIST Standard
 - too new, and private to have trust


Message Digests

- Goal: Send Signed Plain text
 - can use slow cryptography on signature since its short
- Need:
 - Given P, easy to compute MD(P)
 - Given MD(P), impossible to find P
 - no P and P' exist such that MD(P) = MD(P')
 - use hash functions that produce >= 128 bit digest
- Operation
 - A sends P, D_a(MD(P))
- Digest Functions
 - MD5
 - produces 128 bit digest
 - SHS
 - NSA/NIST effort
 - produces 160 bit output

CMSC 417 - S97 (lect 23)

Naming Hosts In the Internet

- Originally used a single file
 - all hosts had line line with name and IP Address
- Domain Naming System (DNS)
 - introduced in 1986
 - tree based structure to names
 - Names
 - full name must be less than 256 characters
 - each part can be up to 64 characters
 - are case insensitive
 - administration of subtrees can be deligated
 - each administrative region is called a zone

DNS (cont.)

- Resource Records
 - DNS is really a distributed, replicated database
- Several types of tuples in the database
 - SOA Start of Authority information for a zone
 - A IP Address record
 - MX Mail exchanger
 - priority and destination (host name) to accept mail
 - NS Name of the name server for this domain
 - CNAME Canonical name (DNS name)
 - PTR alias for an IP Address
 - HINFO Host Info (CPU and OS type information)
 - TXT other text information

Name Servers

- A collection of servers is used to run DNS
 - root servers: handle top level domains
 - have pointers to servers for deligated sub-domains
 - areas of the namespace covered by a server called a zone
- Zones
 - has one primary server (zone information stored on disk)
 - secondary name servers (get info from primary)
 - secondary server may be located outside of the zone
- Namelookup
 - start at current name server
 - if not found, resolve down tree to correct zone server
 - data may be cached in servers
 - this information may be out of data
 - authoritative data comes from the primary/secondary NS