Announcements

- Reading
 - Today: 7.1
- No Office Hours on Wed
 - will have office hours on Thursday 10:45 to 11:45

DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

Public Key Encryption

- Split into public and private keys
 - public key used to encrypt messages
 - publish this key widely
 - private key used to decrypt messages
 - keep this key a secret
- RSA
 - algorithm for computing public/private key pairs
 - based on problems involved in factoring large primes
 - for an n bit message P, C = ($P^e \mod n$), and P = ($C^d \mod n$)
- Other Public Key Algorithms
 - knapsack
 - given a large collection of objects with different weights
 - public key is the total weight of a subset of the objects
 - private key is the list of objects

CMSC 417 - S97 (lect 22

Authentication

- Identify the parties that wish to communicate
- Create a session key
 - a random string
 - used only for one session
- Authentication based on Shared Keys
 - each party already shares a private key
 - exchanged via an out of band transmission
 - challenge-response
 - send a random string
 - response is the encryption of the random string with the shared key

Attacking the Simplified Protocol

- T can get B to respond to is own challenge
- T opens a second session with B
 - it issues B's session 1 challenge back to B in session 2

Key Distribution Center

- Problem with Private Key Authentication
 - Need to establish key
 - for n people need n² keys
 - keys must be established via out-of-band communication
- Solution: Key Distribution Center (KDC)
 - trusted party used to assist in authentication
 - each party establishes a private key with the center
- have KDC trans-code a message with a session key
 - A sends to KDC <A, $K_A(B, K_s)$ >
 - KDC sends to $B < K_b(A, K_s) >$
 - open to replay attack
 - T logs KDC to B message and all traffic using $\rm K_{s}$

