
1CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today:3.1-3.3
– Tuesday: 3.5-3.6
– section 3.4 was covered before (during session)

2CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Data Link Layer

l Goal: transmit error free frames over the physical link
l Sample Issues:

– how big is a frame?
– can I detect an error in sending the frame?
– what demarks the end of the frame?
– how to control access to a shared channel?

l Examples:
– Ethernet framing

3CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Frames
l Slice Raw bit stream up into frames

– need to have manageable unit of transmission
l Frame Boundary

– How do we know when a frame ends?
– Character count

• header indicates number of bytes
• problem: what if the header is corrupt, can’t tell end of frame

– Special character
• ASCII: DLE STX … DLE STE
• need to use character stuffing to send DLE characters

– send two DLE to indicate a DLE
– Special bit pattern - no longer tied to ASCII

• 01111110 - indicates end of frame
• need to use bit stuffing to send 01111110 as data

– insert 0 after 5 1’s
– use link level invalid bit patterns

• some bits may not be valid

4CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Other Link Functions

l Error Control
– may want to do sequence numbers and re-transmission
– this introduces overhead, but useful if probability of failure is high

l Flow Control
– provide rate matching between sender and receiver
– sender has rules about when it can send: credits, etc.

5CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Error Correcting Codes

l Idea: add redundant information to permit recovery
– this is the dual of data compression (remove redundancy)

l Hamming distance (n)
– number of bit positions that differ in two words
– key idea: need n single bit errors to go from one word to the

other
– to detect d errors, need a hamming distance of d+1 from any

other valid word.
– to recover d errors, need a hamming distance of 2d + 1

• any error of d bits is still closer to correct word

l Parity bit
– ensure that every packet has an odd (or even) # of 1’s
– permits detection of one 1 bit error

6CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Error Codes (cont.)

l Error Recovery
– Given m bits of data and r bits of error code
– Want to correct any one bit error
– There are n words one bit from each valid message

• so need n+1 words for each valid message
• thus (n + 1) 2m <= 2n

• but n = m + r so (m + r + 1) <= 2r

l Hamming Code
– recovers from any one bit error
– number bits from left (starting at 1)

• power of two bits are parity
• rest contain data

– bit is checked by all parity bits in its sum of power expansion
• bit 11 is used to compute parity bits 1, 2, and 8v

7CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Hamming Code Example

Char ASCII Hamming

H 1001000 00110010000

a 1100001 10111001001

m 1101101 11101010101

I 1101001 01101011001

l Burst Errors
– can send hamming codes by column rather than row
– if use k rows, then can detect any burst error up to k bits

• uses kr bits to check a block km bits long

8CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Error Detection

l Less bits are required
– if errors are infrequent, then then this works better
– assumes that re-transmission is possible

l Cyclic Redundancy Codes (CRC)
– Use a generator function G(x) of degree r
– let M’ be the message with r 0’s on the end of it
– divide M’ into G(x) and compute remainder

• use this as the r bit CRC code
– a code with r bits will detect all burst errors less than r bits
– several G’s are standardized

• CRC-12 = x12 + x11 + x3 + x2 + x + 1
• CRC-16 = x16 + x15 + x2 + 1
• CRC-CCITT = x16 + x12 + x5 + 1

– 16 bit CRC will catch
• all single and double bit errors
• all errors with an odd number of bits
• all burst errors of length less than 16

9CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

CRC Example
Frame : 1 1 0 1 0 1 1 0 1 1

Generator: 1 0 0 1 1

Transmitted frame: 1 1 0 1 0 1 1 0 1 1 1 1 1 0

Message after appending 4 zero bits: 1 1 0 1 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0

 1 1 0 0 0 0 1 0 1 0

1 0 0 1 1

 1 0 0 1 1

 1 0 0 1 1

 0 0 0 0 1

 0 0 0 0 0

 0 0 0 1 0

 0 0 0 0 0

 0 0 1 0 1

 0 0 0 0 0

 0 1 0 1 1

 0 0 0 0 0

 1 0 1 1 0

 1 0 0 1 1

 0 1 0 1 0

 0 0 0 0 0

 1 0 1 0 0

 1 0 0 1 1

 0 1 1 1 0

 0 0 0 0 0

 1 1 1 0
Remainder

10CMSC 417 - S97 (lect 16) copyright 1997 Jeffrey K. Hollingsworth

Data Link Protocols

l Stop And Wait
– send a frame
– wait for ACK
– need sequence number to tell re-transmission from next packet

• lost ACK vs. lost frame

l Sliding Window
– sequence numbers
– can send up to window size number frames
– Retransmission

• Go Back N
• Selective repeat

